Answer:

Explanation:
= Initial concentration = 1.28 M
= Final concentration = ![0.17[A]_0](https://tex.z-dn.net/?f=0.17%5BA%5D_0)
k = Rate constant = 0.0632 s
t = Time taken
For first order reaction we have the relation
![kt=\ln\dfrac{[A]_0}{[A]}\\\Rightarrow t=\dfrac{\ln\dfrac{[A]_0}{[A]}}{k}\\\Rightarrow t=\dfrac{\ln\dfrac{[A]_0}{0.17[A]_0}}{0.0632}\\\Rightarrow t=28.037\ \text{s}](https://tex.z-dn.net/?f=kt%3D%5Cln%5Cdfrac%7B%5BA%5D_0%7D%7B%5BA%5D%7D%5C%5C%5CRightarrow%20t%3D%5Cdfrac%7B%5Cln%5Cdfrac%7B%5BA%5D_0%7D%7B%5BA%5D%7D%7D%7Bk%7D%5C%5C%5CRightarrow%20t%3D%5Cdfrac%7B%5Cln%5Cdfrac%7B%5BA%5D_0%7D%7B0.17%5BA%5D_0%7D%7D%7B0.0632%7D%5C%5C%5CRightarrow%20t%3D28.037%5C%20%5Ctext%7Bs%7D)
Time taken to reach the required concentration would be
.
Answer:

Explanation:
Hello!
In this case, since the Gibbs free energy of any process is related with the enthalpy change, temperature and entropy change as shown below:

For a chemical reaction it is simply modified to:

Thus, since the enthalpy of reaction is given as -304.2 kJ and the entropy as -414.2 J/K (-0.4142 kJ/K), at 775 K the Gibbs free energy of reaction turns out:

Whose result means this is a nonspontaneous reaction.
Best regards!
Answer:
Gas in motion : Vaporization
Examples of fluid flow :
- A river flowing down a mountain
- Air passing over a bird's wing
- Blood moving through a circulatory system
- Fuel moving through an engine.
Explanation:
Answer:
86.85°C
Explanation:
K = °C + 273.15
360K − 273.15 = 86.85°C ≈ 87°C
Answer:
5.7*10^4 is equal to 57,000.
Explanation:
First, we must multiply 10 by its power, 4. That would be 10 4 times.
10*10*10*10 = 10,000.
Then, we multiply it by 5.7.
5.7*10,000 = 57,000.
Regards!