Step-by-step explanation:
The graph of the function y=|x| is as shown in the attached diagram. The only possible translation of this graph right and up is option A. (In option B graph is translated right and down, in option C- left and up and in option D - left and down). Answer: correct choice is A.
Answer:
64
Step-by-step explanation:
We can use the product rule of counting to answer this:
There are 4 possibilities for the 1st digit
There are 4 possibilities for the 2nd digit
There are 4 possibilities for the 3rd digit
So we use the product rule of counting to give us:
4×4×4=64
Answer:
k = 30, 
Step-by-step explanation:
Since
is a solution, then it must satisfy the differential equation. So, we calculate the derivatives and replace the value in the equation. We have that

Then, replacing the derivatives in the equation we have:

Since
is a positive function, we have that
.
Now, consider a general solution
, then, by calculating the derivatives and replacing them in the equation, we get

We already know that r=5 is a solution of the equation, then we can divide the polynomial by the factor (r-5) to the get the other solution. If we do so, we get that (r-6)=0. So the other solution is r=6.
Therefore, the general solution is

Answer:
0.347% of the total tires will be rejected as underweight.
Step-by-step explanation:
For a standard normal distribution, (with mean 0 and standard deviation 1), the lower and upper quartiles are located at -0.67448 and +0.67448 respectively. Thus the interquartile range (IQR) is 1.34896.
And the manager decides to reject a tire as underweight if it falls more than 1.5 interquartile ranges below the lower quartile of the specified shipment of tires.
1.5 of the Interquartile range = 1.5 × 1.34896 = 2.02344
1.5 of the interquartile range below the lower quartile = (lower quartile) - (1.5 of Interquartile range) = -0.67448 - 2.02344 = -2.69792
The proportion of tires that will fall 1.5 of the interquartile range below the lower quartile = P(x < -2.69792) ≈ P(x < -2.70)
Using data from the normal distribution table
P(x < -2.70) = 0.00347 = 0.347% of the total tires will be rejected as underweight
Hope this Helps!!!