22.7 liters
The molar volume of an ideal gas depends on the temperature and pressure. One mole of any ideal gas occupies 22.7 liters at 0 0C and 1 bar (STP).
Hope this helped
Chromatography is used in purification. Drugs analysts may use the technique to separate the active molecule in a drug molecule, for efficacy or toxicity analysis, from the other drug components.
Explanation:
Chromatography is used to separate a mixture of different components based on the size of their molecules. In liquid chromatography, the mixture is dissolved in a solvent that acts as the mobile phase and then passed along a stationary phase with different kinds of pores, As the mixture passes through the pores, their different components are separated because they take different times to pass through the stationary phase because of their different rates in passing through the pores.
In gas chromatography, a gas is used as a mobile phase while a liquid is used as the stationary phase.
Learn More:
For more on chromatography check out;
brainly.com/question/13232854
#LearnWithBrainly
The attraction mediated flow of water in the narrow tube has been termed as Capillary action. Thus, option A is correct.
The process of flowing up of liquid with the attraction force between the molecules and the surface has been achieved with the surface characteristics.
<h3>Movement of water in a narrow tube</h3>
The surface has the force of attraction with the flowing liquids in the sample. It results in the increased surface interaction, and the liquid flows up in the tube against gravity.
The movement of the liquid in the water through a narrow tube has been termed as capillary action. Thus, option A is correct.
Learn more about movement of water, here:
brainly.com/question/1295312
What are the temperatures
Carbon(C):
number of moles= mass/molar mass(Mr)
=65.5/12
=5.5 moles
Hydrogen(H):
number of moles=mass/molar mass (Mr)
=5.5/1
=5.5 moles
Oxygen (O):
number of moles = mass/molar mass (Mr)
=29.0/16
=1.8 moles
EF= lowest number of moles over each of the elements
So,
C= 5.5/1.8 = 3
H= 5.5/1.8 = 3
O= 1.8/1.8 = 1
Therefore Emperical formula= C3H3O