Answer:
25.907°C
Explanation:
In Exercise 102, heat capacity of bomb calorimeter is 6.660 kJ/°C
The heat of combustion of benzoic acid is equivalent to the total heat energy released to the bomb calorimeter and water in the calorimeter.
Thus:

= heat of combustion of benzoic acid
= heat energy released to water
= heat energy released to the calorimeter
Therefore,
![-m_{combust}*H_{combust} = [m_{water}*c_{water} + C_{calori}]*(T_{f} - T_{i})](https://tex.z-dn.net/?f=-m_%7Bcombust%7D%2AH_%7Bcombust%7D%20%3D%20%5Bm_%7Bwater%7D%2Ac_%7Bwater%7D%20%2B%20C_%7Bcalori%7D%5D%2A%28T_%7Bf%7D%20-%20T_%7Bi%7D%29)
1.056*26.42 = [0.987*4.18 + 6.66](
- 23.32)
27.8995 = [4.12566+6.660](
- 23.32)
(
- 23.32) = 27.8995/10.7857 = 2.587
= 23.32 + 2.587 = 25.907°C
Answer:
I think im good at it i have an A in the class
Explanation:
lol
the particles of solids move but very slowly.
the particles of liquids move moderately fast
the particles of gas move very fast.
The reasons for this movement is the space the particles are together. Since there is not move space between solids, the particles move slowly, water there is moderate space, and air there is a lot of space.
Answer: When two light bulbs are connected in parallel, which is true? A. The total resistance is less than the resistance of either bulb alone. B. The Voltage provided
Explanation:
"The reaction will absorb energy" is the best conclusion according to the energy diagram of the chemical reaction.
<u>Option: B</u>
<u>Explanation:</u>
The chemical bonds in the reactions are broken and formed as per process and contributed by three major steps: reactants, transition phase and product formation. Here transition phase is in equilibrium stage drived by activation energy, where bond is partially formed and partially broken, located at higher energy level then the starters.
The reactant's energy level is less relative to the products as seen in the endothermic reactions' energy diagram, which depicts that the products are less balanced than reactants. Here when the reaction is forced to the forward direction, then it direct towards the more unbalance entities. As energy is absorbed in the endothermic reaction from surrounding, thus the enthalpy change (ΔH) for the reaction is positive.