The formula to calculate buoyant force (FB) states that the upward force exerted on an immersed object is equal to the density (ρ ) of the fluid multiplied by both the fluid’s displaced volume (V) and the gravitational acceleration (g), or
FB = ρ x V x g.<span>
I hope that helped with what you're doing.
You can also try water displacement in a graduated cylinder.</span>
1) Answer is: c) The reaction will proceed right.
Balanced chemical reaction: N₂(g) + 3H₂(g) ⇄ 2NH₃(g) ΔH = +92 kJ.
Reducing the volume of the system increase the partial pressures of the products and reactants.
With a pressure increase due to a decrease in volume, the side of the equilibrium with fewer moles is more favorable, there are 4 moles at the left side (three moles of hydrogen and one mole of nitrogen) and 2 moles (ammonia) at the right side of the reaction.
2) Answer is: d) The partial pressure of ammonia will increase.
This reaction is endothermic (enthalpy is higher than zero), which means that heat is added.
According to Le Chatelier's principle when the reaction is endothermic heat is included as a reactant and when the temperature increased, the heat of the system increase, so the system consume some of that heat by shifting the equilibrium to the right, producing more ammonia.
Answer:
33/16 S
Explanation:
In beta decay, the atomic number of the daughter nucleus increases by one unit while the mass of the daughter nucleus remains the same as that of the parent nucleus.
Hence, if we know that a beta decay has occurred, then the parent nucleus must have the same mass as its daughter nucleus but have an atomic number that is less than that of the daughter nucleus by only one unit, hence the answer above.
A reduced element (which gains electrons) and an oxidized element are required for redox reactions (gives electrons). It is not a redox reaction if we lack both of them (an element can not receive electrons if no element gives electrons and vice versa).
A reduced half and an oxidized half, which always occur together, make up redox processes. While the oxidized half experiences electron loss and an increase in oxidation number, the reduced half obtains electrons and the oxidation number declines. The mnemonic devices OIL RIG, which stand for "oxidation is loss" and "reduction is gain," are simple ways to memorize this. In a redox process, the total number of electrons stays constant. In the reduction half reaction, another species absorbs those that were released in the oxidation half reaction.
In a redox reaction, two species exchange electrons, and they are given unique names:
- The ion or molecule that accepts electrons is called the oxidizing agent - by accepting electrons it oxidizes other species.
- The ion or molecule that donates electrons is called the reducing agent - by giving electrons it reduces the other species.
Hence, what is oxidized is the reducing agent and what is reduced is the oxidizing agent.
<h3>
What is the purpose of oxidizing agents and reducing agents?</h3>
By reducing other compounds and shedding electrons, a reducing agent raises its oxidation state. An oxidizing agent gets electrons by oxidizing other compounds; as a result, its oxidation state lowers.
<h3>
What is a redox reaction?</h3>
Oxidation-reduction (or "redox") reactions are chemical processes in which electrons are exchanged between two substances. An oxidation-reduction reaction is any chemical process in which a molecule, atom, or ion alters the number of electrons it has, hence increasing or decreasing its oxidation state.
Learn more about redox reaction: brainly.com/question/13293425
#SPJ4