Answer:
Actually the same happens when the ray passes through optical centre. This can be observed in a thick lens. In thin lenses the perpendicular distance between extended incident ray and extended emergent ray is negligible. So we can say that light ray passes through optical centre without deviation.
Explanation:
Fibers of the sweater lose electrons
because electrons are leave it.
One of the ways of charging a body is by friction. Charges are transferred from one body to another when an object is rubbed against another. This is charging by friction.
A sweater has negative charges hence when the balloon is rubbed against the sweater, fibers of the sweater lose electrons
because electrons are leave it.
Learn more: brainly.com/question/830809
Answer:
The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Explanation:
The relationship between energy and wavelength is expressed below:
E = hc/λ
λ = hc/EK - EL
Considering the condition of Bragg's law:
2dsinθ = mλ
For the first order Bragg's law of reflection:
2dsinθ = (1)λ
2dsinθ = hc/EK - EL
d = hc/2sinθ(EK - EL)
Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.
Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Explanation:
Given that,
Magnitude of vector A, |A| = 15
Magnitude of vector B, |B| = 25
We need to find the magnitude of this sum.
The maximum sum of the resultant vector,

The minimum sum of the resultant vector,

So, the magnitude of this sum either 45 or -10.