Answer:
The constant angular acceleration of the centrifuge = -252.84 rad/s²
Explanation:
We will be using the equations of motion for this calculation.
Although, the parameters of this equation of motion will be composed of the angular form of the normal parameters.
First of, we write the given parameters.
w₀ = initial angular velocity = 2πf₀
f₀ = 3650 rev/min = (3650/60) rev/s = 60.83 rev/s
w₀ = 2πf₀ = 2π × 60.83 = 382.38 rad/s
θ = 46 revs = 46 × 2π = 289.14 rad
w = final angular velocity = 0 rad/s (since the centrifuge come rest at the end)
α = ?
Just like v² = u² + 2ay
w² = w₀² + 2αθ
0 = 382.38² + [2α × (289.14)]
578.29α = -146,214.4644
α = (-146,214.4644/578.29)
α = - 252.84 rad/s²
Hope this Helps!!!
Answer:
Bacteria, Hydra, Copperheads, Blackworms, and Strawberries
Explanation:
Answer:
The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.
Explanation:
Given:-
- The diameter of the drill bit, d = 98 cm
- The power at which drill works, P = 5.85 hp
- The rotational speed of drill, N = 1900 rpm
Find:-
What Torque And Force Is Applied To The Drill Bit?
Solution:-
- The amount of torque (T) generated at the periphery of the cutting edges of the drilling bit when it is driven at a power of (P) horsepower at some rotational speed (N).
- The relation between these quantities is given:
T = 5252*P / N
T = 5252*5.85 / 1900
T = 16.171 Nm
- The force (F) applied at the periphery of the drill bit cutting edge at a distance of radius from the center of drill bit can be determined from the definition of Torque (T) being a cross product of the Force (F) and a moment arm (r):
T = F*r
Where, r = d / 2
F = 2T / d
F = 2*16.171 / 0.98
F = 33 N
Answer: The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.
Answer:
a)
m/s
b)
Angular frequency = 
Explanation:
As we know

q is the charge on the electron =
C
B is the magnetic field in Tesla =
T
r is the radius of the circle =
m
mass of the electrons =
Kg
a)
Substituting the given values in above equation, we get -
m/s
b)
Angular frequency =
