Answer:
The object will be sank
Explanation:
In this case the object is more dense than water.
Density is the relationship between a certain amount of mass of matter and the volume that is being occupied by it.
The object occupies more volume, so it occupies more mass.
As the mass from the object is higher, the object will be sank because the weight is higher than the weight from the liquid.
If the object has a lower density than the water, it will float on it.
The upper surface of the zone of saturation is called the water table
E
θ
Cell
=
+
2.115
l
V
Cathode
Mg
2
+
/
Mg
Anode
Ni
2
+
/
Ni
Explanation:
Look up the reduction potential for each cell in question on a table of standard electrode potential like this one from Chemistry LibreTexts. [1]
Mg
2
+
(
a
q
)
+
2
l
e
−
→
Mg
(
s
)
−
E
θ
=
−
2.372
l
V
Ni
2
+
(
a
q
)
+
2
l
e
−
→
Ni
(
s
)
−
E
θ
=
−
0.257
l
V
The standard reduction potential
E
θ
resembles the electrode's strength as an oxidizing agent and equivalently its tendency to get reduced. The reduction potential of a Platinum-Hydrogen Electrode under standard conditions (
298
l
K
,
1.00
l
kPa
) is defined as
0
l
V
for reference. [2]
A cell with a high reduction potential indicates a strong oxidizing agent- vice versa for a cell with low reduction potentials.
Two half cells connected with an external circuit and a salt bridge make a galvanic cell; the half-cell with the higher
E
θ
and thus higher likelihood to be reduced will experience reduction and act as the cathode, whereas the half-cell with a lower
E
θ
will experience oxidation and act the anode.
E
θ
(
Ni
2
+
/
Ni
)
>
E
θ
(
Mg
2
+
/
Mg
)
Therefore in this galvanic cell, the
Ni
2
+
/
Ni
half-cell will experience reduction and act as the cathode and the
Mg
2
+
/
Mg
the anode.
The standard cell potential of a galvanic cell equals the standard reduction potential of the cathode minus that of the anode. That is:
E
θ
cell
=
E
θ
(
Cathode
)
−
E
θ
(
Anode
)
E
θ
cell
=
−
0.257
−
(
−
2.372
)
E
θ
cell
=
+
2.115
Indicating that connecting the two cells will generate a potential difference of
+
2.115
l
V
across the two cells.
Because the ring is hollow