Answer:
When 1.20 mole of ammonia reacts, 1.8 moles of water are produced.
Explanation:
The balanced reaction is:
4 NH₃(g) + 5 O₂(g) → 4 NO (g) + 6 H₂O
By stoichiometry of the reaction, the following amounts of moles participate in the reaction:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then you can apply the following rule of three: if by stoichiometry 4 moles of ammonia produce 6 moles of water, 1.2 moles of ammonia will produce how many moles of water?

moles of water= 1.8 moles
<u><em>When 1.20 mole of ammonia reacts, 1.8 moles of water are produced.</em></u>
<u><em></em></u>
Answer:
2Fe⁺³ + Sn₂ → 2Fe⁺² + 2Sn⁺²
Explanation:
A redox reaction occurs between a compound that loses electrons and others that gain an electron. The first is being oxidized, and the other is being reduced.
In this situation, in the compound Fe₂O₃, the iron, has an oxidation number equal to +3, so it's Fe⁺³, and it will gain 1 electron to become Fe⁺². Because it was first dissolved in HCl, we must use the ion at the equation. The other compound Sn₂ will be oxidized to Sn⁺², so it will need to lose 2 electrons.
So, it will be necessary 2 Fe⁺³ for this reaction happen:
2Fe⁺³ + Sn₂ → 2Fe⁺² + 2Sn⁺²
When a bond is formed, energy is released into the environment. That is because it is an exothermic reaction, it releases energy. <span />
Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.