As the volume of the container increases the pressure inside will decrease because the atoms have more room to move around in.
Answer:
Part a)

Part b)

Explanation:
Part a)
Since the two magnetic field is in same direction
so the net magnetic field is algebraic sum of magnetic field due to both
so here magnetic field of wire is given as

here we know that
I = 2 A
r = 5 cm
so we will have


So net magnetic field is given as

Part b)
When direction of current is reversed then the direction of magnetic field is also reversed
So we will have

Answer:
Speed = 0.00392 m/s
Explanation:
Solution:
Frequency of the radio = 85 MHz
If we have the frequency, we can calculate the wavelength of the radio wave.
As we know,
Frequency = speed of light/wavelength
wavelength = c/f
c = speed of light = 3 x
m/s
So,
Wavelength = 3 x
m/s / 85 x
Hz
Wavelength = 3.5294 m
Man gets disturbed reception at t = 15 min
t = 15 x 60 = 900 s
t = 900 s
Speed = distance/time
Here, distance is wavelength. So,
Speed = 3.5294 m / 900 s
Speed = 0.00392 m/s
Hence, the man's car is going with speed of 0.00392 m/s
Answer:
39.375 A
Explanation:
To find the induced current, we use the relation
e = -ΔΦ/Δt, where
ΔΦ = change in magnetic flux of the bracelet
Δt = change in time, = 20 ms
Also, Φ = A.ΔB, such that
A = area of the bracelet, 0.005m²
ΔB = magnetic field strength of the bracelet = 1.35 - 4.5 = -3.15 T
ΔΦ = A.ΔB
ΔΦ = 0.005 * -3.15
ΔΦ = -.01575 wb
e = -ΔΦ/Δt
e = -0.01575 / 20*10^-3
e = 0.7875 V
From the question, the resistance of the bracelet is 0.02 ohm, so
From Ohms Law, I = V/R
I = 0.7875 / 0.02
I = 39.375 A