Velocity is speed with direction. So, if velocity varies directly with speed, that statement would be true. A constant velocity would resort in a constant speed. They are connected and are dependant on each other.
I hope this helps!
~kaikers
Answer:
43.16°
Explanation:
λ = Wavelength = 1.4×10⁻¹⁰ m
θ₁ = 20°
n can be any integer
d = distance between the two slits
Since for the first bright fringe, n₁ = 1
n₂ = 2 for second order line
The relation between the distance of the slits and the angle through which it is passed is:
dsinθ=nλ
As d and λ are constant
∴ Angle by which the second order line appear is 43.16°
Well you of course have different kinetic energies with the two speeds.
Kinetic energy = (1/2)*mass*velocity^2
The vehicle's mass is the same in both cases, so we can ignore that as well as 1/2 since it's a constant.
So we have (30)^2 vs (60^2)
which is 900 vs 3600
So having 60 mph compared to 30 mph is 4 times the kinetic energy.
Answer:
Reactance
Explanation:
In an AC circuit, the capacitive reactance of a capacitor is given by:
where
f is the frequency of the AC current
C is the capacitance of the capacitor
The reactance of the capacitor tells somehow the "resistance" of the capacitor to the passage of current through it. In fact:
- When the frequency of the AC current is zero (this means, we are in regime of DC current), the reactance becomes infinite, and this is true because the capacitor does not let the current pass through it)
- When the frequency of the AC current tends to infinite, the reactance becomes zero, and this is true because in this case the current changes direction so fast that the capacitor has not enough time to "block" the current, so the current almost no feels the presence of the capacitor.
I believe because there is much less air and much more water in the bottom