Karate class, kicking high and ducking fast makes you much more flexible and you must pay respects to those ou fight with and be intune with yourself to do it right, in other words karate is the answer.
You do this one just like the other one that I just solved for you.
For this one ...
The density of the object is 2.5 gm/cm³.
We know that every cm³ of it we have contains 2.5 gm of mass.
We have to find out how many cm³ we have.
The question tells us: We have 2.0 cm³.
Each cm³ of space that the object occupies contains 2.5 gm of mass.
So the 2.0 cm³ that we have contains (2 x 2.5 gm) = 5 gms.
That's the mass of our object.
...............................................................
Answer:
attractive toward +x axis is the net horizontal force
attractive toward +y axis is the net vertical force
Explanation:
Given:
- charge at origin,

- magnitude of second charge,

- magnitude of third charge,

- position of second charge,

- position of third charge,

<u>Now the distance between the charge at at origin and the second charge:</u>



<u>Now the distance between the charge at at origin and the third charge:</u>



<u>Now the force due to second charge:</u>


attractive towards +y
<u>Now the force due to third charge:</u>


attractive
<u>Now the its horizontal component:</u>

attractive toward +x axis
<u>Now the its vertical component:</u>

upwards attractive
Now the net vertical force:



Electromagnetic spectrum
Radio waves
Micro waves
Infrared
Visible lighta
ultraviolet
x ray
gammary