Molecule, a group of two or more atoms that form the smallest identifiable unit into which a pure substance can be divided and still retain the composition and chemical properties of that substance.
While Atoms are single neutral particles,
Molecules are neutral particles made of two or more atoms bonded together.
Exaplmes for molecules
H2O (water)
N2 (nitrogen)
O3 (ozone)
CaO (calcium oxide)
C6H12O6 (glucose, a type of sugar)
NaCl (table salt
And examples for atoms
Neon (Ne)
Hydrogen (H)
Argon (Ar)
Iron (Fe)
Calcium (Ca)
Deuterium, an isotope of hydrogen that has one proton and one neutron.
Plutonium (Pu)
F-, a fluorine anion.
Answer:
The correct answer is Option
B. A homogeneous mixture
Explanation: Mixture is solution which is made of two or more than two substances which are combined only physically not chemically. There are two types of mixture i. e. Homogeneous mixture and heterogeneous mixture. Homogeneous mixture is a mixture in which the substances which are combined are uniform in appearance and heterogeneous mixture is a mixture in which substances are suspended in the solution and easily differentiated.
W=F*d
W= 500 J
F = 250 N
500 J = 250 N * d
d= 500J/250 N = 2 J/N = 2(N*m)/N = 2 m
Answer is 2 m.
Answer:
The volume of the gas is determined, which will allow you to calculate the temperature.
Explanation:
According to Charles law; the volume of a given mass of an ideal gas is directly proportional to its temperature at constant pressure.
This implies that, when the volume of an ideal gas is measured at constant pressure, the temperature of the ideal gas can be calculated from it according to Charles law.
Hence in the Ideal Gas Law lab, the temperature of an ideal gas is measured by determining the volume of the ideal gas.
Answer:
The new temperature of the water bath 32.0°C.
Explanation:
Mass of water in water bath ,m= 8.10 kg = 8100 g ( 1kg = 1000g)
Initial temperature of the water =
Final temperature of the water =
Specific heat capacity of water under these conditions = c = 4.18 J/gK
Amount of energy lost by water = -Q = -69.0 kJ = -69.0 × 1000 J
( 1kJ=1000 J)
The new temperature of the water bath 32.0°C.