Because if you start at one for example you starting at a extra cm/m/mm. So when you get your measurement result it will be wrong by just one cm/m/mm. Hope this wasn't too confusing.
C. transition, as they show variable oxidation states.
Answer: 66.66 ml
Explanation: Using Molarity equation:
(stock solution)=
(solution to be prepared)
given: 



(stock solution)=
(solution)

a. There are 1.85 moles in 2.00 × 10² g of silver (Ag).
b. There are 0.618 moles in 37.1 g of silicon dioxide (SiO₂)
<h3>What is the molar mass?</h3>
The molar mass is the mass in grams of 1 mole of particles, that is, the mass in grams of 6.02 × 10²³ particles. The units are g/mol.
We want to calculate the number of moles represented by different masses of different substances. In each case, the conversion factor between mass and moles is the molar mass.
- a. 2.00 × 10² g of silver (Ag)
The molar mass of silver is 107.87 g/mol.
2.00 × 10² g × (1 mol/107.87 g) = 1.85 mol
- b. 37.1 g of silicon dioxide (SiO₂)
The molar mass of silicon dioxide is 60.08 g/mol.
37.1 g × (1 mol/60.08 g) = 0.618 mol
a. There are 1.85 moles in 2.00 × 10² g of silver (Ag).
b. There are 0.618 moles in 37.1 g of silicon dioxide (SiO₂)
Learn more about molar mass here: brainly.com/question/21334167
#SPJ1