Answer:
The answers are in the explanation
Explanation:
- Initial pH: An acid solution more dilute has a higher pH because concentration of H⁺ decreases.
- pH at the half‐equivalence point: In a titration curve. The pH at the half-equivalence point will be higher because the initial pH is higher and the equivalence point pH is the same.
- NaOH volume needed to reach the equivalence point: As the diulte solution has a higher pH, the NaOH volume you need is lower than original solution.
- pH at the equivalence point: The pH at the equivalence point will be always the same (pH = 7,0). Because is the pH where the total H⁺ of the acid were consumed.
I hope it helps!
From equation;
P1V1=P2V2
V2=P1V1÷P2
since P2=380mmHg
now;1atm=760mmHg
how about 380mmHg is equal to how many atm?
380×1÷760=0.5atm
P2 now is equal to 0.5atm
back from equation;
P1V1=P2V2
V2=P1V1÷P2
V2=4.0atm×2.0L÷0.5atm
V2=16L
therefore V2=16L.
I think that the answer is B, but I may be wrong...
I don’t understand the question
Answer:
30 cm³
Explanation:
Step 1: Given data
- Density of aluminum (ρ): 2.7 g/cm³
- Mass of aluminum (m): 81 g
- Volume occupied by aluminum (V): ?
Step 2: Calculate the volume occupied by aluminum
The density of aluminum is equal to its mass divided by its volume.
ρ = m/V
V = m/ρ
V = 81 g / 2.7 g/cm³
V = 30 cm³