Arrhenius' equation relates the dependence of rate constant of a chemical reaction to the temperature. The equation below is the Arrhenius equation

where k is the rate constant, T is the absolute temperature. As the temperature of the system increases, the rate constant also increases and vice versa.
Answer:
10.347 minutes.
Explanation:
According to F = ma, she exerts force on camera of the magnitude
F = 0.67Kg*12m/
= 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a =
.
and velocity of V = 0.1130801680m/s.
at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).
When white light is diffracted and blue color is seen is due to the absorbance of wavelength of all other color except blue.
<u>Explanation:
</u>
- The white light diffracts into rainbow colors which are the 7 colors present in form of VIBGYOR.
- VIBGYOR is the violet, Indigo, Blue, Green, Yellow, Orange and Red.
- When the blue color is seen denotes the shortest wavelength being reflected and all other being absorbed at the specified location.
The image distance when a boy holds a toy soldier in front of a concave mirror, with a focal length of 0.45 m. is -0.56 m.
<h3>What is image distance?</h3>
This is the distance between the image formed and the focus when an object is placed in front of a plane mirror.
To calculate the image distance, we use the formula below.
Formula:
- 1/f = 1/u+1/v........... Equation 1
Where:
- f = Focal length of the mirror
- v = Image distance
- u = object distance
From the question,
Given:
Substitute these values into equation 1 and solve for the image distance
- 1/0.45 = 1/0.25 + 1/v
- 2.22 = 4+1/v
- 1/v = 2.22-4
- 1/v = -1.78
- v = 1/(-1.78)
- v = -0.56 m
Hence, The image distance is -0.56 m.
Learn more about image distance here: brainly.com/question/17273444
We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction.
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end)
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)