a. The direction of the stone's velocity changes as it moves around the circle.
b. The magnitude of the stone's velocity does not change.
d. The change in direction of the stone's motion is due to the centripetal force acting on the stone.
Above given are true for the given situation.
<u>Answer:</u> Option A, B and D
<u>Explanation:</u>
Circular motion may be characterized as the moving of an objects along the diameter of the circle or any circular direction. It may be standardized and non-uniform based on whether or not the rate of rotation is unchanged.
The velocity, a vector quantity is constant in a uniform circle motion speed is constant as its direction continues to change. Centripetal force works inward toward the core to counterbalance the centrifugal force from the center moving outward.
Answer:
Gravitational force. Magnetic force. Electrostatics. Nuclear force.
Explanation:
Apple falling from a tree
raindrops falling from the sky
Climate is a particular place's distance from the equator
Answer:
241.7 s
Explanation:
We are given that
Charge of particle=
Kinetic energy of particle=
Initial time=
Final potential difference=
We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.
We know that

Using the formula


Initial voltage=

Using the formula





Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.
Answer:
magnitude of force on charge 2Q = 
Direction of force on charge = 61 ⁰
Explanation:
The magnitude on the force on the charge can be evaluated by finding the net force acting on the charge 2Q i.e x-component of the net force and the y-component of the net force
║F║ =
= after considering the forces coming from Q, 3Q and 4Q AND APPLYING COULOMBS LAW
magnitude of force acting on 2Q = 
The direction of the force on charge 2Q is calculated as
tan ∅ =
= 1.8284
therefore ∅ =
1.8284
= 61⁰