During a car crash, energy is transferred from the vehicle to whatever it hits, be it another vehicle or a stationary object. ... The object that was struck will either absorb the energy thrust upon it or possibly transfer that energy back to the vehicle that struck it.
I HOPE THIS HELPSS???
Mark me brainliest
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Winds are named based on which compass direction the wind is blowing. For example some common ones are NE or N or SE or SW. NE stands for Northeast, N for North, SE for South East and SW for Southwest.
Answer:
Explanation:
change in flux = no of turns x area of loop x change in magnetic field
= 1 x π 65² x 10⁻⁶ x ( 650 - 350 ) x 10⁻³
= 3.9 x 10⁻³ weber .
rate of change of flux = change of flux / time
= 3.9 x 10⁻³ / .10
= 39 x 10⁻³ V
= 39 mV .
Since the magnetic flux is directed outside page and it is increasing , induced current will be clockwise so that magnetic field is produced in opposite direction to reduce it , as per Lenz's law.
Answer:
They are 7.4m apart.
Explanation:
Here we have a parabolic motion problem. we need the time taken to land so:

considerating only the movement on Y axis:

Because we have a contant velocity motion on X axis:

and

the distance between them is given by:
