1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
3 years ago
6

True or false a critique of hazwoper incidents that have occurred in the past year should not be included in hazwoper 8 hour ref

resher training
Engineering
1 answer:
Jobisdone [24]3 years ago
7 0

Answer:

False

Explanation:

No matter if something happened in the past year or so, it still should be included for safety reasons so it wont happen again

You might be interested in
Asolid rectangular rodhas a length of 90mm, made of steel material (E =207,000 MPa, Syield= 300 MPa), the cross section of the r
erastova [34]

Answer:

13.6mm

Explanation:

We consider diameter to be a chord that runs through the center point of the circle. It is considered as the longest possible chord of any circle. The center of a circle is the midpoint of its diameter. That is, it divides it into two equal parts, each of which is a radius of the circle. The radius is half the diameter.

See attachment for the step by step solution of the problem

3 0
3 years ago
A three-phase wye-connected synchronous generator supplies a network through a transmission line. The network can absorb or deli
Amanda [17]

Answer:

the graph and the answer can be found in the explanation section

Explanation:

Given:

Network rated voltage = 24 kV

Impedance of network = 0.07 + j0.5 Ω/mi, 8 mi

Rn = 0.07 * 8 = 0.56 Ω

Xn = 0.5 * 8 = 4 Ω

If the alternator terminal voltage is equal to network rated voltage will have

Vt = 24 kV/√3 = 13.85 kV/phase

The alternative current is

I_{a} =\frac{40x10^{6} }{\sqrt{3}*24x10^{3}  } =926.2A

X_{s} =0.85\frac{13.85}{926.2} =12.7ohm

The impedance Zn is

\sqrt{0.56^{2}+4^{2}  } =4.03ohm

The voltage drop is

I_{a} *Z_{n} =926.2*4.03=3732.58V

r_{dc} =\frac{voltage}{2*current} =\frac{13.85}{2*926.2} =7.476ohm

rac = 1.2rdc = 1.2 * 7.476 = 8.97 Ω

The effective armature resistance is

Z_{s} =\sqrt{R_{a}^{2}+X_{s}^{2}    } =\sqrt{8.97^{2}+12.7^{2}  } =15.55ohm

The induced voltage for leading power factor is

E_{F} ^{2} =OB^{2} +(BC-CD)^{2}

if cosθ = 0.5

E_{F} =\sqrt{(13850*0.5)^{2}+(\frac{3741}{2}-926.2*12.7)^{2}   } =11937.51V

if cosθ= 0.6

EF = 12790.8 V

if cosθ = 0.7

EF = 13731.05 V

if cosθ = 0.8

EF = 14741.6 V

if cosθ = 0.9

EF = 15809.02 V

if cosθ = 1

EF = 13975.6 V

The voltage regulation is

\frac{E_{F}-V_{t}  }{V_{t} } *100

For each value:

if cosθ = 0.5

voltage regulation = -13.8%

if cosθ = 0.6

voltage regulation = -7.6%

if cosθ = 0.7

voltage regulation = -0.85%

if cosθ = 0.8

voltage regulation = 6.4%

if cosθ = 0.9

voltage regulation = 14%

if cosθ = 1

voltage regulation = 0.9%

the graph is shown in the attached image

for 10% of regulation the power factor is 0.81

8 0
3 years ago
Find the power and the rms value of the following signal square: x(t) = 10 sin(10t) sin(15t)
ArbitrLikvidat [17]

Answer:

\mathbf{P_x =25 \ watts}

\mathbf{x_{rmx} = 5 \ unit}

Explanation:

Given that:

x(t) = 10 sin(10t) . sin (15t)

the objective is to find the power and the rms value of the following signal square.

Recall that:

sin (A + B) + sin(A - B) = 2 sin A.cos B

x(t) = 10 sin(15t) . cos (10t)

x(t) = 5(2 sin (15t). cos (10t))

x(t) = 5 × ( sin (15t + 10t) +  sin (15t-10t)

x(t) = 5sin(25 t) + 5 sin (5t)

From the knowledge of sinusoidial signal  Asin (ωt), Power can be expressed as:

P= \dfrac{A^2}{2}

For the number of sinosoidial signals;

Power can be expressed as:

P = \dfrac{A_1^2}{2}+ \dfrac{A_2^2}{2}+ \dfrac{A_3^2}{2}+ ...

As such,

For x(t), Power  P_x = \dfrac{5^2}{2}+ \dfrac{5^2}{2}

P_x = \dfrac{25}{2}+ \dfrac{25}{2}

P_x = \dfrac{50}{2}

\mathbf{P_x =25 \ watts}

For the number of sinosoidial signals;

RMS = \sqrt{(\dfrac{A_1}{\sqrt{2}})^2+(\dfrac{A_2}{\sqrt{2}})^2+(\dfrac{A_3}{\sqrt{2}})^2+...

For x(t), the RMS value is as follows:

x_{rmx} =\sqrt{(\dfrac{5}{\sqrt{2}} )^2 +(\dfrac{5}{\sqrt{2}} )^2 }

x_{rmx }=\sqrt{(\dfrac{25}{2} ) +(\dfrac{25}{2} ) }

x_{rmx }=\sqrt{(\dfrac{50}{2} )}

x_{rmx} =\sqrt{25}

\mathbf{x_{rmx} = 5 \ unit}

8 0
3 years ago
What three actions consume traction? Why is it wise to never exceed traction capability?
nirvana33 [79]
Acceleration breaking and steering
7 0
3 years ago
Read 2 more answers
2
aksik [14]

Answer:tech A

Explanation:

5 0
3 years ago
Other questions:
  • Consider a cubical furnace with a side length of 3 m. The top surface is maintained at 700 K. The base surface has emissivity of
    13·1 answer
  • given the classes above, what output is produced by the following code? meg[] elements ={new Lois(), new Stewie(), new Meg(), ne
    15·1 answer
  • Steam at a pressure of 100 bar and temperature of 600 °C enters an adiabatic nozzle with a velocity of 35 m/s. It leaves the noz
    10·1 answer
  • Suppose that we have a 1000 pF parallel-plate capacitor with air dielectric charged to 1000 V. The capacitors terminals are open
    13·1 answer
  • A flashed steam geothermal power plant is located where underground hot water is available as saturated liquid at 700 kPa. The w
    14·1 answer
  • 1) Each of the following would be considered company-confidential except
    10·1 answer
  • What Number Am I?
    13·1 answer
  • Select the correct answer.
    6·1 answer
  • Engineered lumber should not be used for
    15·1 answer
  • The diagram illustrates a method of producing plastics called​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!