Answer:
Explanation:
Attached is the solution to the question
Answer:
a) 0.684
b) 0.90
Explanation:
Catalyst
EO + W → EG
<u>a) calculate the conversion exiting the first reactor </u>
CAo = 16.1 / 2 mol/dm^3
Given that there are two stream one contains 16.1 mol/dm^3 while the other contains 0.9 wt% catalyst
Vo = 7.24 dm^3/s
Vm = 800 gal = 3028 dm^3
hence Im = Vin/ Vo = (3028 dm^3) / (7.24dm^3/s) = 418.232 secs = 6.97 mins
next determine the value of conversion exiting the reactor ( Xai ) using the relation below
KIm =
------ ( 1 )
make Xai subject of the relation
Xai = KIm / 1 + KIm --- ( 2 )
<em>where : K = 0.311 , Im = 6.97 ( input values into equation 2 )</em>
Xai = 0.684
<u>B) calculate the conversion exiting the second reactor</u>
CA1 = CA0 ( 1 - Xai )
therefore CA1 = 2.5438 mol/dm^3
Vo = 7.24 dm^3/s
To determine the value of the conversion exiting the second reactor ( Xa2 ) we will use the relation below
XA2 = ( Xai + Im K ) / ( Im K + 1 ) ----- ( 3 )
<em> where : Xai = 0.684 , Im = 6.97, and K = 0.311 ( input values into equation 3 )</em>
XA2 = 0.90
<u />
<u />
<u />
Answer:
y ≈ 2.5
Explanation:
Given data:
bottom width is 3 m
side slope is 1:2
discharge is 10 m^3/s
slope is 0.004
manning roughness coefficient is 0.015
manning equation is written as

where R is hydraulic radius
S = bed slope



P is perimeter 

![Q = (2+2y) y) \times 1/0.015 [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} 0.004^{1/2}](https://tex.z-dn.net/?f=Q%20%3D%20%282%2B2y%29%20y%29%20%5Ctimes%201%2F0.015%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%200.004%5E%7B1%2F2%7D)
solving for y![100 =(2+2y) y) \times (1/0.015) [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} \times 0.004^{1/2}](https://tex.z-dn.net/?f=100%20%3D%282%2B2y%29%20y%29%20%5Ctimes%20%281%2F0.015%29%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%20%5Ctimes%200.004%5E%7B1%2F2%7D)
solving for y value by using iteration method ,we get
y ≈ 2.5
Answer:
Ponding will occur in 40mins
Explanation:
We say that the infiltration rate is the velocity or speed at which water enters into the soil. This often times is measured by the depth (in mm) of the water layer that can enter the soil in one hour. An infiltration rate of 15 mm/hour means that a water layer of 15 mm on the soil surface, will take one hour to infiltrate.
Consider checking attachment for the step by step solution.
Answer:
1
Explanation:
because every time you dived a number by its own number it is 1