Answer:
0.667 per day.
Explanation:
Our values here are

Degradation constant=k and is unknown.
We calculate the concentration through the formula,

Replacing values we have

That is the degradation constant of Z-contaminant
Answer:
a) The net force on the ball is instantaneously equal to zero newtons at the top of the flight path.
Explanation:
At an instantenous time at the top of the flight path, the upward force due to the Canon explosion on the ball is just equal to the weight of the ball, this will equate the net force on the ball to zero. At this point the velocity of the ball is zero before it decends down to earth under its own weight.
These parts are commonly called carburetor emulsion tubes. These tubes maintain the air-fuel ratio at different speeds.
The carburetor is a device of the combustion engine power supply system that mixes fuel and air in order to facilitate internal combustion.
The carburetor emulsion tubes are tubes that maintain the air-fuel ratio at different velocities.
These tubes (carburetor emulsion tubes) are small brass cylinders where the metering needle slides into them.
Learn more about carburetors here:
brainly.com/question/4237015
Answer: Option A is correct -- 2.6 at% Pb and 97.4 at% Sn.
Explanation:
Option A is the only correct option -- 2.6 at% Pb and 97.4 at% Sn. While option B, which is 7.6 at% Pb and 92.4 at% Sn. and option C, which is 97.4 at% Pb and 2.6 at% Sn. and option D, which is 92.4 at% Pb and 7.6 at% Sn. are wrong.
Answer:
T = 15 kN
F = 23.33 kN
Explanation:
Given the data in the question,
We apply the impulse momentum principle on the total system,
mv₁ + ∑
= mv₂
we substitute
[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ × ( 45 × 1000 / 3600 )
F( 75 - 0 ) = 1.75 × 10⁶
The resultant frictional tractive force F is will then be;
F = 1.75 × 10⁶ / 75
F = 23333.33 N
F = 23.33 kN
Applying the impulse momentum principle on the three cars;
mv₁ + ∑
= mv₂
[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ × ( 45 × 1000 / 3600 )
F(75-0) = 1.125 × 10⁶
The force T developed is then;
T = 1.125 × 10⁶ / 75
T = 15000 N
T = 15 kN