Answer:
C₁₀ = 6.3 KN
Explanation:
The catalog rating of a bearing can be found by using the following formula:
C₁₀ = F [Ln/L₀n₀]^1/3
where,
C₁₀ = Catalog Rating = ?
F = Design Load = 2.75 KN
L = Design Life = 1800 rev/min
n = No. of Hours Desired = 10000 h
L₀ = Rating Life = 500 rev/min
n₀ = No. of Hours Rated = 3000 h
Therefore,
C₁₀ = [2.75 KN][(1800 rev/min)(10000 h)/(500 rev/min)(3000 h)]^1/3
C₁₀ = (2.75 KN)(2.289)
<u>C₁₀ = 6.3 KN</u>
So I’m thinking C because they both have a lot to do with design here is my evidence. Structural engineering is a component of civil engineering which focuses on the design and development of infrastructures such as bridges, skyscrapers, dams. Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment. I may be wrong but hope this helped!
Fill it out without telling ur employer as that may cause backlash and have an osha certified employee come check out ur work or job site
Answer:
V = 6.33 m/s
Explanation:
Given:
- The length of the wire L = 0.02 m
- The diameter of the wire D = 0.0005 m
- The calibration expression V = 0.0000625*h^2
- Environment temperature T_inf = 298 K
- Surface temperature T_s = 348 K
- The voltage drop dV = 5 V
- The electric current I = 0.1 A
Find:
- the velocity of Air
Solution:
- Calculate the surface area of the wire:
A = pi*D*L
A = pi*(0.0005)*(0.02) = 0.00003142 m^2
- The rate of energy in the wire P:
P = I*dV = 0.1*5 = 0.5 W
- Apply Newton's Law of Cooling:
P = h*A*(T_s - T_inf)
h = P /A*(T_s - T_inf)
Plug in the values:
h= 0.5/ 0.00003142*(348 - 298)
h = 318.27 W /m^2K
- Using the calibration relationship given, compute the velocity of air:
V = 6.25*10^-5 * h^2
V = 6.25*10^-5 * (318.27)^2
V = 6.33 m/s