Each mole of substance contains 6.02 x <span>1023</span> component parts, in this case water molecules.
If you have 2.3 moles of water you will have 2.3 x 6.02 x <span>1023</span> which is 1.3846 x <span>1024</span> molecules.
Each molecule contains 2 hydrogen atoms, so the total number of hydrogen atoms in 2.3 moles of water will be 2 x 1.3846 x <span>1024</span> = 2.7692 x <span>1024</span>.
Please mark brainliest, thanks :)
The answer is C) Nuclear.
The answer is C because, Renewable resources are something that can be re-used over and over again. Then Nonrenewable resources can't be made right away once it's been used. That being said, the answer is C.
A) Geothermal can be reused, which makes it renewable.
B) Solar can also be reused, which makes it renewable.
C) Nuclear can NOT be reused, which makes it nonrenewable.
D) Biomas is indeed renewable.
Answer:
0.147 billion years = 147.35 million years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of Potassium-40 is 1.25 billion years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(1.25 billion years) = 0.8 billion year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
<em></em>
where, k is the rate constant of the reaction (k = 0.8 billion year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of (Potassium-40) ([A₀] = 100%).
[A] is the remaining concentration of (Potassium-40) ([A] = 88.88%).
- At the time needed to be determined:
<em>8 times as many potassium-40 atoms as argon-40 atoms. Assume the argon-40 only comes from radioactive decay.</em>
- If we start with 100% Potassium-40:
∴ The remaining concentration of Potassium-40 ([A] = 88.88%).
and that of argon-40 produced from potassium-40 decayed = 11.11%.
- That the ratio of (remaining Potassium-40) to (argon-40 produced from potassium-40 decayed) is (8: 1).
∴ t = (1/k) ln([A₀]/[A]) = (1/0.8 billion year⁻¹) ln(100%/88.88%) = 0.147 billion years = 147.35 million years.