Answer:
Option B. Both have a pH less than 7, but H3PO4 has a lower pH than HCl
Explanation:
Those are acid, so the pH would be < 7.
H₃PO₄ is a weak acid with 3 dissociations
HCl is a strong acid.
pH depends on [H]⁺
H₃PO₄ → 3H⁺ + PO₄⁻³
HCl → H⁺ + Cl⁻
If both acid, have the same concentration, [H⁺]H₃PO₄ > [H⁺]HCl, that's why the pH from the phosphoric will be lower.
i believe the answer is success of a policy. if this was correct please mark brainliest and lmk if you have any more questions x
Answer:
O Option 1
Explanation:
IF ENERGY IS RELEASED, THEN ENERGY RELEASED SHOULD BE SUBTRACTED FROM ORIGINAL.
(16.32 X 10^-19) - (5.4 X 10^-19)
10.92 X 10^-19
Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
Answer: 631.8 g
Explanation:

It can be seen from the balanced chemical equation, 2 moles of ethane reacts with 7 moles of Oxygen gas to produce 4 moles of carbon dioxide and 6 moles of water.
Ethane is the limiting reagent as it limits the formation of product.
Thus, if 2 moles of ethane produce 6 moles of water.
11.7 moles moles of ethane produce=
of water.
Mass of water= no of moles
Molar mass
Mass of water= 35.1
18g/mol= 631.8 g