Answer:
2.5
Step-by-step explanation:
Answer:
d. t distribution with df = 80
Step-by-step explanation:
Assuming this problem:
Consider independent simple random samples that are taken to test the difference between the means of two populations. The variances of the populations are unknown, but are assumed to be equal. The sample sizes of each population are n1 = 37 and n2 = 45. The appropriate distribution to use is the:
a. t distribution with df = 82.
b. t distribution with df = 81.
c. t distribution with df = 41.
d. t distribution with df = 80
Solution to the problem
When we have two independent samples from two normal distributions with equal variances we are assuming that
And the statistic is given by this formula:
Where t follows a t distribution with
degrees of freedom and the pooled variance
is given by this formula:
This last one is an unbiased estimator of the common variance
So on this case the degrees of freedom are given by:

And the best answer is:
d. t distribution with df = 80
Step-by-step explanation:
1/3x=1/6
x/3=1/6
cross multiply
6x=3
divide both sides by 6
x=3/6
x=1/2
Answer:
Manuel made his first mistake in step 2 leading to the continuous mistakes
Final answer=185
Step-by-step explanation:
Manuel made at least one error as she found the value of this expression. 2(-20) + 3[5/4(-20)] + 5[2/5(50)] + 4(50) Step 1: 2(-20) + 3(-25) + 5(20) + 4(50) Step 2: (3 + 2)(-20 + -25) + (5 + 4)(20 + 50) Step 3: 5(-45) + 9(70) Step 4: -225 + 630 Step 5: 405 Identify the step in which Chris made her first error. After identifying the step with the first error, write the corrected steps and find the final answer.
2(-20) + 3[5/4(-20)] + 5[2/5(50)] + 4(50)
Step 1: 2(-20) + 3(-25) + 5(20) + 4(50)
Step 2: -40 - 75 + 100 +
200
Step 3: -115 + 300
Step 4: 185
Manuel made his first error in step 2 by combining two different terms into one as he has done
(3 + 2)(-20 + -25) and also (5 + 4)(20 + 50)
Step 2: (3 + 2)(-20 + -25) + (5 + 4)(20 + 50)
Step 3: 5(-45) + 9(70) Step 4: -225 + 630 Step 5: 405
He should have evaluated the terms separately as I have done above, giving us 185 as the final answer in contrast to his 405 final answer.