Answer:
2 /s north
Explanation:
Given that,
Velocity due North is 8 m/s and due south is 6 m/s
We need to find the magnitude and the direction of the resulting velocity.
Let North is positive and South is negative. When two velocities are in opposite direction, they adds up. So,

It is positive. So, it is in North direction.
Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
B)
If it is known that the atomic number is 8, we know that the electrons are also 8. Since the atomic mass (O18) is 18, the neutrons are 18-8=10. Option B is the correct answer.
Hope I helped :)
<h2>It will take 0.125 seconds to reach the net.</h2>
Explanation:
Initial speed, u = 34 ft/s = 10.36 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = Final height - Initial height = 8 - 4 = 4 ft = 1.22 m
We have equation of motion, s = ut + 0.5 at²
Substituting
s = ut + 0.5 at²
1.22 = 10.36 x t + 0.5 x -9.81 x t²
4.905t² - 10.36 t + 1.22 = 0
t = 1.99 s or t = 0.125 seconds
Minimum time is 0.125 seconds.
It will take 0.125 seconds to reach the net.
Even though the wind "tries" to flow from high pressure to low pressure, the turning of the Earth causes the air flow to turn to the right (in the Northern Hemisphere), so the jet stream flows around the air masses, rather than directly from one to the other.