Answer:
From the information provided we have:
PD ≅ RD (= 11)
∠CPD ≅ ∠CRD (= 90°)
They both have CD as the hypotenuse.
=> ΔCPD ≅ ΔCRD
=> ∠PCD ≅ ∠RCD
Now we know that:
∠RCP = ∠PCD + ∠RCD
∠RCP = 2 · ∠RCD
∠RCP = 2 · 33° = 66°
So the answer is B
The measure of angle A is 144.3 degrees and the angle to cut the molding is 54.3 degrees
<h3>How to solve for angle A?</h3>
Start by solving the acute part of angle A using the following sine function
sin(Ax) = (30 - 4)/32
Evaluate the quotient
sin(Ax) = 0.8125
Take the arc sin of both sides
Ax = 54.3
The measure of angle A is then calculated as:
A = 90 + Ax
This gives
A = 90 + 54.3
Evaluate
A = 144.3
Hence, the measure of angle A is 144.3 degrees
<h3>The angle to cut the molding</h3>
In (a), we have:
Ax = 54.3
This represents the angle where the molding would be cut
Hence, the angle to cut the molding is 54.3 degrees
Read more about angles at:
brainly.com/question/1592456
#SPJ1
74 is what percent of 95?
74 is P% of 95
Equation: Y = P% * X
Solving our equation for P
P% = Y/X
P% = 74/95
p = 0.7789
Convert decimal to percent:
<span>P% = 0.7789 * 100 = 77.89%
</span>
Hope I helped!
Let me know if you need anything else!
~ Zoe
Answer:
n > -2
Step-by-step explanation:
5n > -10
n > -2