Answer:
1,033.56 grams of carbon dioxide was emitted into the atmosphere.
Explanation:
Energy absorbed by pork,E =
(assuming)
Total energy produced by barbecue = Q
Percentage of energy absorbed by pork = 10%


Since, it is a energy produced in order to indicate the direction of heat produced we will use negative sign.
Q = 
Moles of propane burnt to produce Q energy =n


According to reaction , 1 mol of propane gives 3 moles of carbon dioxide. then 7.83 moles of will give:
carbon dioxide gas.
Mass of 23.49 moles of carbon dioxide gas:
23.49 mol × 44 g/mol =1,033.56 g
1,033.56 grams of carbon dioxide was emitted into the atmosphere.
Answer:
3. doubles
Explanation:
for an ideal gas behavior, the relationship between volume and temperature is given by Charles law
Charles law states that the volume of a given mass of gas is directly proportional to its temperature provided that pressure remains constant. Mathematically, this is represented as
V ∝ T
V=KT
K = V/T
where V is the volume of the gas
T is the Temperature
k represents the constant of proportionality
For initial and final conditions of a gas,
= 
where 1 and 2 represent initial and final conditions respectively
therefore, T₁ = 100 and T₂ = 200
= 
200 × V₁ = 100 × V₂
divide both sides by 100
2V₁ = V₂
final volume,V₂ = 2V₁
there the volume doubles
Your arm looks similar to a chicken wing beneath your skin. Both contain a ton of cartilage.
Explanation:
the stationary phase in TLC is a <u>silica gel coated metal plate or paper</u>.
The<u> individual</u> component of the mixure will travel a greater distance up the plate, resulting in a <u>Rf</u> value for the component.
the <u>p-Xylene spot </u> will travel a greater distance as it is the <u>lighter</u> component
Bromobenzene will travel least as it is the <u>heavier</u> component.
thin layer chromatography (TLC) is a type of chromatographic seperation technique that is based on the molecular size of components. the Rf value is the distance covered by the component relative to that travelled by the solvent which is the mobile phase
Answer:
0.04 mol
Explanation:
Given data:
Mass of barium = 5.96 g
Moles of barium = ?
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of barium = 5.96 g/ 137.33 g/mol
Number of moles = 0.04 mol
Thus the number of moles of barium in 5.96 g are 0.04 moles. The chemist weight out the 0.04 moles .