Answer:
20.25 m
Explanation:
- <u>Centripetal acceleration </u>is given by; the square of the velocity, divided by the radius of the circular path.
That is;
<em><u>ac = v²/r</u></em>
<em> </em><em><u> Where; ac = acceleration, centripetal, m/s², v is the velocity, m/s and r is the radius, m</u></em>
Therefore;
r = v²/ac
= 27²/36
= 20.25 m
Hence the radius is 20.25 meters
If he keeps that pace he will be at the 34 yard line
Answer:
Be pushed away from each other.
Explanation:
Answer:
1. -8.20 m/s²
2. 73.4 m
3. 19.4 m
Explanation:
1. Apply Newton's second law to the car in the y direction.
∑F = ma
N − mg = 0
N = mg
Apply Newton's second law to the car in the x direction.
∑F = ma
-F = ma
-Nμ = ma
-mgμ = ma
a = -gμ
Given μ = 0.837:
a = -(9.8 m/s²) (0.837)
a = -8.20 m/s²
2. Given:
v₀ = 34.7 m/s
v = 0 m/s
a = -8.20 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx
Δx = 73.4 m
3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.
d = v₀t
d = (34.7 m/s) (0.56 s)
d = 19.4 m
I think its A let me know its wrong or not