Answer:
Fnet - Fg
Explanation:
When an object is in an elevator, its weight varies with respect to the direction of movement of the elevator and the elevators acceleration.
The weight, W, of an object can be expressed as;
W = mg
where m is the object's mass, and g is the acceleration due gravity.
If the object is in an elevator that speed up, an apparent weight would be felt since both mass and elevator are moving against gravitational pull of the earth.
So that,
= mg + ma
where: mg is the weight of the object, and ma is the apparent weight.
Apparent weight (ma) =
- mg
Answer:


Explanation:
<u>Horizontal Launch</u>
When an object is thrown horizontally with a speed v from a height h, it describes a curved path ruled by gravity until it eventually hits the ground.
The horizontal component of the velocity is always constant because no acceleration acts in that direction, thus:
vx=v
The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

The horizontal component of the velocity is always the same:

The vertical component at t=5.5 s is:


Answer:
21s
Explanation:
Given parameters;
Radius = 10m
Speed or velocity = 3m/s
Unknown:
Period = ?
Solution:
To solve this problem, use the expression:
v =
r is the radius
T is the unknown
Input the parameters and solve for T;
3 =
62.84 = 3T
T = 21s
Answer:
q = C V charge on 1 capacitor
q = 1 * 10E-6 * 110 = 1.1 * 10E-4 C per capacitor
N = Q / q = 1 / 1.1 * 10E-4 = 9091 capacitors
Answer:
V = 0.0723 volts = 72.3 milivolts
Explanation:
The emf induced in the rod is the motional emf due to the magnetic field. This motional emf can be calculated by the following formula:

where,
V = Motional EMF = ?
v = speed of rod = 12.5 m/s
B = Magnetic Field = 6.23 mT = 0.00623 T
l = Length of rod = 92.9 cm = 0.929 m
θ = angle between v and B = 90°
Therefore,

<u>V = 0.0723 volts = 72.3 milivolts</u>