Answer:
Bulb 1 has more resistance.
Explanation:
Given that,
Two lightbulbs work on a 120-V circuit.
The power of circuit 1, P₁ = 50 W
The power of circuit 2, P₂ = 100 W
We need to find the bulb that has a higher resistance.
The power of the bulb is given by :

For bulb 1,

For bulb 2,

So, bulb 1 has higher resistance.
Explanation:
time spent to run from house to school=100/5=20s
time spent to return from school=100/10=10s
average velocity=200m/(10+20)
Hello, sorry this is a little late!
I believe the correct answer to your question would be option D, <span>electric charges have electric fields surrounding them to allow them to exert forces on other objects without touching them.
I just took this test, and can 100% confirm this is the proper answer.
Hope this helps, and have a great day! :)</span>
Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10