Answer:
21 mL of NaOH is required.
Explanation:
Balanced reaction: 
Number of moles of HBr in 11.0 mL of 0.30 M HBr solution
=
moles = 0.0033 moles
Let's say V mL of 0.16 M NaOH solution is required to reach equivalence point.
So, number of moles of NaOH in V mL of 0.16 M NaOH solution
=
moles = 0.00016V moles
According to balanced equation-
1 mol of HBr is neutralized by 1 mol of NaOH
So, 0.0033 moles of HBr are neutralized by 0.0033 moles of NaOH
Hence, 

So, 21 mL of NaOH is required.
Their prey would decrease
Answer:
The molality of the glycerol solution is 2.960×10^-2 mol/kg
Explanation:
Number of moles of glycerol = Molarity × volume of solution = 2.950×10^-2 M × 1 L = 2.950×10^-2 moles
Mass of water = density × volume = 0.9982 g/mL × 998.7 mL = 996.90 g = 996.90/1000 = 0.9969 kg
Molality = number of moles of glycerol/mass of water in kg = 2.950×10^-2/0.9969 = 2.960×10^-2 mol/kg
Answer:
The mass of PbSO4 formed 15.163 gram
Explanation:
mole of Pb(NO₃)₂ = 1.25 x 0.05 = 0.0625
mole of Na₂SO₄ = 2 x 0.025 = 0.05
Pb(NO₃)₂ + Na₂SO₄ → PbSO₄ + 2 NaNO₃
( Mole/Stoichiometry )
= 0.0625 = 0.05
From (Mole/ Stoichiometry ) we can conclude that Na₂SO₄ is limiting reagent.
Mass of PbSO₄ precipitate = 0.05 x Molecular mass of PbSO₄
= 0.05 x 303.26 g
= 15.163 g