Answer:
Mass = 0.139 kg
Explanation:
There is a formula in terms of force, acceleration and mass which is:
Force = mass × acceleration
Put the values into the formula.
5 = m × 36
m = 5 ÷ 36
<u>m = 0.139 kg</u>
Answer:
well since 3 is greater than 2 it would be 3 moles of sulfur.
Explanation:
Greenhouse effect is the process of trapping sun radiation in the earth surface, so as to make the planet warm. It is a natural phenomenon in which sun rays that enters the earth surface are re-radiated into the earth surface causing the heat trap in the earth.
In similar manner, green house also trap radiation inside the glass house. The sun rays once reach inside the glass house, strike on plants and objects and reflected back. For entire radiation to escape from the green house, the heat flow between the two points must be proportional to the temperature difference and thermal conductivity. The glass of which the green house are made up, have low thermal conductivity. So, temperature must rise inside glass house so to maintain the heat flow rate of incoming and outgoing radiation.
The green house glass are insulated and they trap the infrared emitted by the objects inside the green house from escaping outside. Since the infrared have longer wave lengths, it is released slowly.
Also, the thermal energy inside the glass house are transferred by convection process. But the glass walls and roof act as insulator, keeping the radiant energy from escaping outside the green house.<span />
Answer: The energy (heat) required to convert 52.0 g of ice at –10.0°C to steam at 100°C is 157.8 kJ
Explanation:
Using this formular, q = [mCpΔT] and = [nΔHfusion]
The energy that is needed in the different physical changes is thus:
The heat needed to raise the ice temperature from -10.0°C to 0°C is given as as:
q = [mCpΔT]
q = 52.0 x 2.09 x 10
q = 1.09 kJ
While from 0°C to 100°C is calculated as:
q = [mCpΔT]
q = 52.0 x 4.18 x 100
q = 21.74 kJ
And for fusion at 0°C is called Heat of fusion and would be given as:
q = n ΔHfusion
q = 52.0 / 18.02 x 6.02
q = 17.38 kJ
And that required for vaporization at 100°C is called Heat of vaporization and it's given as:
q = n ΔHvaporization
q = 52.0 / 18.02 x 40.7
q = 117.45 kJ
Add up all the energy gives 157.8 kJ