To determine the amount of a substance in units of moles from units of grams, we need to determine the molar mass of the substance. <span>The </span>molar mass<span> is the </span>mass<span> of a given chemical element or chemical compound (g) divided by the amount of substance (mol). For CuF2, the molar mass </span><span>101.543 g/mol. We calculate as follows:
100.0 g CuF2 ( 1 mol / 101.543 g) = 0.98 mol CuF2</span>
Answer:
0.0685 mL
Explanation:
To find the volume of the sample, divide the mass by the density.
(1.00 g)/(14.6 g/mL) = 0.0685 mL
Answer:
Explanation:
Partial pressure of oil = mole fraction of oil x total pressure
mole fraction of oil = mole of oil / mole of water + mole of oil
= mole of oil = mass of oil / molecular weight of oil
= 20 / 100 = .2
mole of water = 80 / 18
= 4.444
mole fraction of oil = .2 / .2 + 4.444
= .2 / 4.644
Partial pressure of oil = mole fraction of oil x total pressure
= (.2 / 4.644 ) x 760 mm
= 32.73 mm Hg .
Dang don’t know I need my answer
Answer:
The number of moles of the chemical constituents will be less than the actual amount.
Explanation:
In calculating empirical formula, we begin with the number of grams of each element, given in the problem.
Given that the spill will affect the mass concentration of the copper chloride solution, calculations to determine the molecular formula (using Molarity = mass conc ÷ molecular mass ) would give a lesser result, which would in turn lower the number of moles of the copper and chloride in the empirical formula calculation.