Answer:
The acid will absolutely remove the hard water deposits that are trapping the stains. The longer it soaks, the less you have to scrub. It works for hard water stains, limescale, and rust!
Explanation:
hope this helped you out.
We write DE = q+w, where DE is the internal energy change and q and w are heat and work, respectively.
(b)Under what conditions will the quantities q and w be negative numbers?
q is negative when heat flows from the system to the surroundings, and w is negative when the system does work on the surroundings.
As an aside: In applying the first law, do we need to measure the internal energy of a system? Explain.
The absolute internal energy of a system cannot be measured, at least in any practical sense. The internal energy encompasses the kinetic energy of all moving particles in the system, including subatomic particles, as well as the electrostatic potential energies between all these particles. We can measure the change in internal energy (DE) as the result of a chemical or physical change, but we cannot determine the absolute internal energy of either the initial or the final state. The first law allows us to calculate the change in internal energy during a transformation by calculating the heat and work exchanged between the system and its surroundings.
Answer:
Carbon has a total of four bonded pairs of electrons around it.
Explanation:
Since there are four "lines" around the C (which stands for Carbon), we can conclude that Carbon has a total of four bonded pairs of electrons around it.
Answer:
pH = 12.08
Explanation:
First we <u>calculate how many moles of each substance were added</u>, using <em>the given volume and concentration</em>:
- HBr ⇒ 0.05 M * 75 mL = 3.75 mmol HBr
- KOH ⇒ 0.075 M * 74 mL = 5.55 mmol KOH
As HBr is a strong acid, it dissociates completely into H⁺ and Br⁻ species. Conversely, KOH dissociates completely into OH⁻ and K⁺ species.
As there are more OH⁻ moles than H⁺ moles (5.55 vs 3.75), we <u>calculate how many OH⁻ moles remain after the reaction</u>:
- 5.55 - 3.75 = 1.8 mmoles OH⁻
With that<em> number of moles and the volume of the mixture</em>, we <u>calculate [OH⁻]</u>:
- [OH⁻] = 1.8 mmol / (75 mL + 74 mL) = 0.0121 M
With [OH⁻], we <u>calculate the pOH</u>:
With the pOH, we <u>calculate the pH</u>: