Answer:
8. the answer is B.
9. the answer is A.
Explanation:
Hello!
8. In this case, by bearing to mind that the limiting reactant is always completely consumed and the excess one remain as a leftover at the end of the reaction, we can also infer that as all the limiting reactant is consumed, it must determine the maximum amount of product as the excess reactant will hypothetically produce a greater mass than expected; thus, the answer to this question is B.
9. In this case, since the mole ratio of oxygen to water is 1:2, the following proportional factor is used to calculate the produced mass of water:

Thus, the answer is this case is A.
Best regards!
Answer:
4.42x10⁻¹⁹ J/molecule
Explanation:
At a double bond, there's sigma and a pi bond, and at a single bond, there's only a sigma bond. Thus, if the energy to break both sigma and pi is 614 kJ/mol, and the energy to break only the sigma bond is 348 kJ/mol, the energy to break only the pi bond is:
E = 614 - 348 = 266 kJ/mol
Knowing that 1 kJ = 1000 J, E = 266,000 J/mol
By Avogadro's number, 1 mol = 6.02x10²³ molecules, thus:
E = 266,000 J/mol * 1mol/6.02x10²³ molecules
E = 4.42x10⁻¹⁹ J/molecule
I’m gonna guess equal force sorry if I get it wrong <3
Pb(NO₃)₂ + (NH₄)₂CO₃ → PbCO₃ + 2 NH₄NO₃
Explanation:
Reaction of lead (II) nitrate with ammonium carbonate will produce lead (II) carbonate and ammonium nitrate.
The balanced chemical equation is:
Pb(NO₃)₂ + (NH₄)₂CO₃ → PbCO₃ + 2 NH₄NO₃
To balance the chemical equation the number of atoms of each element
entering the reaction have to be equal to the number of atoms of each
element leaving the reaction, in order to conserve the mass.
Learn more about:
balancing chemical reactions
brainly.com/question/13911443
#learnwithBrainly