Answer:
Metallic character decreases, and electronegativity increases.
Explanation:
Hello!
In this case, according to the organization of the periodic table, we can see that from left to right, the electronegativity increases as nonmetals are able to attract electrons more easily than metals.
Moreover, in contrast to the previous periodic trend, the metallic character decreases from left to right because the elements tend to decrease the capacity to lose electrons and consequently start attracting them.
Thus, the answer would be: "Metallic character decreases, and electronegativity increases".
Best regards!
First, we need to assume acetylene to adapt an ideal gas behavior. So, we can use the Ideal Gas Law:
PV = nRT
Given:
V = 42 L
T = 305 K
P = 780 torr = 1.026 atm
R = gas constant, 0.0821 L atm/ mol K
n = amount of gas in the canister
1.026 atm * 42 L = n * 0.0821 L atm/mol K * 305 K
n = 1.72 moles of gas
Potassium is more reactive because it is in group one
Explanation:
this molecule is a compound
its chemical formula is NaCO3H
Sodium is in group 1 so it has 1 valence electron (one electron in its outer shell). Sodium will be looking to lose its one valence electron in order to become more stable. Chlorine is in group 17 so it has 7 valence electrons, and therefor only needs to gain one valence electron to attain noble gas electron configuration (become stable with 8 valence electrons, just like the noble gases in group 18 have 8). Because the chlorine atom is trying to gain one electron, and the sodium atom is trying to lose one, sodium will give up its one valence electron to chlorine and the two atoms will form an ionic bond. Because chlorine is looking to gain just one electron and sodium is looking to lose the same number, the ratio of chlorine atoms to sodium atoms will be 1:1, one chlorine atom per one sodium atom.