The correct answer from the choices given is the last option. The can from the <span> car will lose the carbon more quickly because there are fewer solute–solvent collisions. The can in the car has a lower temperature than the one in the refrigerator. At low temperature, the solubility of carbon dioxide in the liquid decrease therefore particles would tend to be in the vapor phase and escape from the liquid.</span>
Answer:
<h2>0.06 % </h2>
Explanation:
The percentage error of a certain measurement can be found by using the formula

From the question
error = 500 - 499.7 = 0.3
actual volume = 500 mL
We have

We have the final answer as
<h3>0.06 % </h3>
Hope this helps you
Assuming the concentration of stock solution is 50% sodium phosphate buffer solution, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
<h3>What volume of a stock Sodium phosphate buffer and water is needed to 12 mL of 25% sodium phosphate buffer of pH 4?</h3>
The process of preparing solutions from stock solutions of higher concentration is known as dilution.
Dilution is done with the aid of the dilution formula given below:
where
- C1 is the concentration of stock solution
- V1 is the volume of stock solution required to prepare a diluted solution
- C2 is the concentration of the diluted solution prepared
- V2 is the final volume of the diluted solution
From the data provided:
C1 is not given
V1 is unknown
C2 = 25%
V2 = 12 mL
- Assuming C1 is 50% solution
Volume of stock, V1, required is calculated as follows:
V1 = C2V2/C1
V1 = 25 × 12 /50
V1 = 6 mL
Therefore, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
Learn more about dilution formula at: brainly.com/question/7208546
<u>Answer:</u> The reaction order with respect to A is 'm'
<u>Explanation:</u>
Order of the reaction is the sum of the concentration of terms on which the rate of the reaction actually depends. It is equal to the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical equation.
The given chemical equation follows:

The rate of the above reaction is given to us as:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In the above rate law expression, the order with respect to the reactants is not equal to the stoichiometric coefficients. Thus, it is not an elementary reaction.
Order with respect to reactant A = m
Order with respect to reactant B = n
Hence, the reaction order with respect to A is 'm'
Answer:Cell reaction is going forward.
Explanation:
For any chemical reaction to be spontaneous or to move in forward direction the ΔG ,the Gibbs free energy must be negative.
The cell potential of a battery is positive for a spontaneous reaction, so for a battery to give output its cell potential must be positive.
Thermodynamics and electro-chemistry are related in the following manner:
ΔG=-nFE
n=number of electrons involved
F=Faradays constant
E=cell pottential of battery
so from the above equation ΔG would only be negative when E cell that is the cell potential is positive.
For a battery which is being used its cell potential is positive and hence the ΔG would be negative. So the cell reaction occurring would be in forward direction as ΔG is negative.
when the cell potential Ecell is 0 then ΔG is also zero then the reaction occurring in battery would be at equilibrium.
When the cell potential Ecell is - then ΔG is positive and the reaction would be occurring backwards.