A) Nitrogen has an ATOMIC mass number of 14, but nitrogen gas consists of N₂ molecules, so the mass to use in this problem is 28 g/mol. Rates of effusion ∝ 1/√(mass), so
<span>√(mass unknown) /√28 = (rate N₂ effusion)/(rate unknown effusion) = 1.59 </span>
<span>∴ mass unknown = (1.59)²(28) = 70.78 g/mol </span>
<span>B) One possible gas that comes close for this mass is NF₃.</span>
Molecular orbital energy is the energy associated with each electron in an atom or molecule.
It is expressed in electron volts (eV) and is determined by the electron's position in the atom or molecule. The molecular orbital energy diagram and fill-in the electrons are given here in each case, the number of valence electrons in the species is determined first; this is followed by the valence molecular orbital diagram for each species.
C2+: Molecular Orbital Energy Diagram
1s2 2s2 2p2
σ2s* ← 0 e-
σ2s ← 2 e-
σ2p* ← 0 e-
σ2p ← 0 e-
π2p* ← 0 e-
π2p ← 0 e-
Bond Order: 0
Stability: Unstable
Magnetism: Diamagnetic (no unpaired electrons)
O2-: Molecular Orbital Energy Diagram
1s2 2s2 2p4
σ2s* ← 0 e-
σ2s ← 2 e-
σ2p* ← 0 e-
σ2p ← 2 e-
π2p* ← 0 e-
π2p ← 2 e-
Bond Order: 1
Stability: Stable
Magnetism: Paramagnetic (2 unpaired electrons)
For more questions like Molecular orbital theory click the link below:
brainly.com/question/20436223
#SPJ4
Mass of Pd = 95.78 g which is close the the variant E) 95.89
Explanation:
To calculate the number of moles of palladium (Pd) we use the following formula:
number of moles = mass / atomic weight
mass = number of moles × atomic weight
mass of Pd = 0.90 × 106.42
mass of Pd = 95.78 g
Learn more about problems with number of moles:
brainly.com/question/3262
Answer:

Explanation:
Hello,
In this case, with the given chemical reaction:

We can notice a 1:1 mole ratio between hydrogen gas and beryllium metal, therefore, beryllium requirement is computed as shown below:

Regards.