1. Magnesium atoms also have a slightly smaller radius than sodium atoms, and so the delocalised electrons are closer to the nuclei.
2. Sodium has higher melting point than potassium because of stronger metallic bonding .
3. Potassium are very soft metal can be very easily cut with a knife
4. Increase of resistance in metals. Therefore the mobility of electrons decreases and causes decrease in conductivity.
5.To increase strength, increase corrosion resistance, or reduce costs.
6. All metals have low ionization energies and are relatively electropositive, and so they lose electrons fairly easily.
7. All the group 1 metals are reactive, but they get more reactive as you go down the group, so potassium is more reactive than sodium.
The two half-reactions are...
Ag→Ag+
and...
NO3→NO
Let's start by balancing the first half-reaction...
Ag→Ag+
The amounts are already balanced; 1:1. The oxygens are balanced. So all that's left is to balance the charge...
Ag→Ag++e−
Now let's do the other equation... Amounts of nitrogen are balanced, so we first need to balance the oxygens...
NO3→NO
4H++NO3→NO+2H2O
Next, we need to balance charge...
4e−+4H++NO3→NO+2H2O
Now let's go ahead and rewrite each half-reaction after being balanced by themselves...
Ag→Ag++e−
4e−+4H++NO3→NO+2H2O
Now we need to multiply by some factor to get the electrons to cancel out. In this case, that factor is 4, which needs to be applied to the top half-reaction...
4(Ag→Ag++e−)=4Ag→4Ag++4e−
Then we combine this half-reaction with the second one above to get...
4Ag+4H++NO3→4Ag++NO+2H2O
Complete Question
A student is extracting caffeine from water with dichloromethane. The K value is 4.6. If the student starts with a total of 40 mg of caffeine in 2 mL of water and extracts once with 6 mL of dichloromethane
The experiment above is repeated, but instead of extracting once with 6 mL the extraction is done three times with 2 mL of dichloromethane each time. How much caffeine will be in each dichloromethane extract?
Answer:
The mass of caffeine extracted is 
Explanation:
From the question above we are told that
The K value is 
The mass of the caffeine is 
The volume of water is 
The volume of caffeine is 
The number of times the extraction was done is n = 3
Generally the mass of caffeine that will be extracted is
![P = m * [\frac{V}{K * v_c + V} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%20m%20%20%2A%20%20%5B%5Cfrac%7BV%7D%7BK%20%2A%20%20v_c%20%2B%20V%7D%20%5D%5E3)
substituting values
![P = 40 * [\frac{2}{4.6 * 2 + 2} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%2040%20%20%20%2A%20%20%5B%5Cfrac%7B2%7D%7B4.6%20%2A%20%202%20%2B%202%7D%20%5D%5E3)

Base on your question where a concentration cell consist of two SN/SN2+half cells. The solution in one half cell A is 0.13M SN(NO3)2 and is 0.87 M Sn(NO3)2 in the other half cell to get the cell potential at 25 degree the answer is 0.059/2 log0.13/0.87
Answer:
It would be True
Explanation:
Because they both have the same push of gravity. Gravity affects all objects equally. If you drop an egg and a watermelon at the same time they would both collide with the floor at the same time.