Answer:
I believe the answer is 1. more specific.
Explanation:
Since the dichotomous key is used to identify a species, you would have to get down to the specifics, so specificity is required.
Answer:
2L of water.
Explanation:
To know the volume of water to be added to the initial solution, first let us calculate the volume of the final solution. This is illustrated below:
Data obtained from the question:
Initial volume (V1) = 2L
Initial concentration (C1) = 6mol/L
Final concentration (C2) = 3mol/L
Final volume (V2) =?
Using the dilution formula, we can obtain the final volume of the stock as follow:
C1V1 =C2V2
6 x 2 = 3 x V2
Divide both side by 3
V2 = (6 x 2)/3
V2 = 4L.
The final volume of the solution is 4L.
To obtain the volume of water added, we shall determine the change in the volume of the solution. This is illustrated below:
Initial volume (V1) = 2L
Final volume (V2) = 4L
Change in volume = V2 – V1 = 4 – 2 = 2L.
Therefore, 2L of water must be added to the initial solution.
Answer:
The correct answer is <em>C) Two atoms of silver are needed to complete the reaction.</em>
Explanation:
The Law of Conservation of Matter postulates that "the mass is not created or destroyed, only transformed." This means that the reagents interact with each other and form new products with physical and chemical properties different from those of the reagents because the atoms of the substances are ordered differently. But the amount of matter or mass before and after a transformation (chemical reaction) is always the same, that is, the quantities of the masses involved in a given reaction must be constant at all times, not changing in their proportions when the reaction ends.
Then, taking into account the Law of Conservation of Matter, as an atom cannot be created or destroyed in a chemical reaction, the number of atoms that are present in the reagents has to be equal to the number of atoms present in the products.
For this, the chemical equation must be balanced. For that, you must first look at the subscripts next to each atom to find the number of atoms in each compound in the equation. If the same atom appears in more than one molecule, you must add its quantities. On the other hand, the coefficients located in front of each molecule indicate the amount of each molecule for the reaction. This coefficient can be modified to balance the equation, just as you should never alter the subscripts. By multiplying the coefficient mentioned by the subscript, you get the amount of each element present in the reaction.
In this case:
Left side: 2 silver (Ag), 2 hydrogen (H) and 1 sulfur (S)
Right side: 2 silver (Ag), 2 hydrogen (H) and 1 sulfur (S)
In this case the equation is balanced because you have the same amount of all the elements on each side of the reaction. And <u><em>the 2 in front of 2Ag indicates that,since silver is a reagent, two atoms of silver are needed to complete the reaction. (option C).</em></u>
2 hydrogen atoms hope this helps
Answer:
86
Explanation:
The reaction that takes place is:
- C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O
First we <u>convert moles of ethanol to moles of water</u>:
- 1.6 mol ethanol *
= 4.8 mol H₂O
Then we <u>convert moles of water to grams of water</u>, using its molar mass:
- 4.8 mol H₂O * 18 g/mol = 86.4 g
So 84.6 grams of water will be produced.