A kilogram is a unit of mass. A meter is a unit of measurement, a Liter is volume and a kelvin is temperature
Answer:
Option a.
0.01 mol of CaCl₂ will have the greatest effect on the colligative properties, because it has the biggest i
Explanation:
To determine which of the solute is going to have a greatest effect on colligative properties we have to consider the Van't Hoff factor (i)
These are the colligative properties:
ΔP = P° . Xm . i → Lowering vapor pressure
ΔT = Kb . m . i → Boiling point elevation
ΔT = Kf . m . i → Freezing point depression
π = M . R . T → Osmotic pressure
Van't Hoff factor are the numbers of ions dissolved in the solution. For nonelectrolytes, the i values 1.
CaCl₂ and KNO₃ are two ionic solutes. They dissociate as this:
CaCl₂ → Ca²⁺ + 2Cl⁻
We have 1 mol of Ca²⁺ and 2 chlorides, so 3 moles of ions → i = 3
KNO₃ → K⁺ + NO₃⁻
We have 1 mol of K⁺ and 1 mol of nitrate, so 2 moles of ions → i = 2
Option a, is the best.
Explanation:
White precipitate of silver chloride get dissolves in excess ammonia to formation of complex between silver ions, chloride ions and ammonia molecules.
The chemical reaction is given as:
![AgCl(s)+2NH_3(aq)\rightarrow Ag[(NH_3)_2]^+Cl^-(aq)](https://tex.z-dn.net/?f=AgCl%28s%29%2B2NH_3%28aq%29%5Crightarrow%20Ag%5B%28NH_3%29_2%5D%5E%2BCl%5E-%28aq%29)
When 1 mole of silver chloride is added to 2 mole of an aqueous ammonia it form coordination complex of diaaminesilver(I) chloride.
Answer:
The answer to your question is 0.62 atm = 62.82 kPa = 471.2 mmHg
Explanation:
Data
P = 0.62 atm
P = ? kPa
P = ? mmHg
Process
1.- Look for the conversion factor of atm to kPa and mmHg
1 atm = 101.325 kPa
1 atm = 760 mmHg
2.- Do the conversions
1 atm ----------------- 101.325 kPa
0.62 atm ------------ x
x = (0,62 x 101.325) / 1
x = 62.82 kPa
1 atm ------------------ 760 mmHg
0.62 atm ------------ x
x = (0.62 x 760)/1
x = 471.2 mmHg