Answer:
The magnitude of the electric field at a point equidistant from the lines is 
Explanation:
Given that,
Positive charge = 24.00 μC/m
Distance = 4.10 m
We need to calculate the angle
Using formula of angle



We need to calculate the magnitude of the electric field at a point equidistant from the lines
Using formula of electric field

Put the value into the formula



Hence, The magnitude of the electric field at a point equidistant from the lines is 
No, because terminal velocity is when the acceleration of the Earth’s gravity is balanced by the air resistance of the atmosphere.
Answer:
<em>2 m/s</em>
<em></em>
Explanation:
The electromagnetic flow-metre work on the principle of electromagnetic induction. The induced voltage is given as

where
is the induced voltage = 2.88 mV = 2.88 x 10^-3 V
is the distance between the electrodes in this field which is equivalent to the diameter of the tube = 1.2 cm = 1.2 x 10^-2 m
is the velocity of the fluid through the field = ?
is the magnetic field = 0.120 T
substituting, we have
2.88 x 10^-3 = 0.120 x 1.2 x 10^-2 x 
2.88 x 10^-3 = 1.44 x 10^-3 x 
= 2.88/1.44 = <em>2 m/s</em>
The best answer to the question that is being stated above would be the first choice. To disprove the claims of the student that you need more protons to have more reactivity, then you proceed to compare the reactivities of lithium (Li) and krypton (Kr). Krypton has more protons than Lithium, but it is less reactive because it is a noble gas.