Answer:
8.6 m/s
Explanation:
We can find the final velocity of the dog by using the following SUVAT equation:

where
u is the initial velocity
a is the acceleration
d is the distance covered
For the dog in the problem, we have
u = 1.5 m/s

And the distance covered is
d = 3.0 m
Therefore, we can re-arrange the equation to find the final velocity, v:

The answer is around 7.
As the acid and the base are of equal strength, they neutralize each other and the resulting solution is neutral (pH≈7).
Hope this helps you!
Answer:
v=0.94 m/s
Explanation:
Given that
M= 5.67 kg
k= 150 N/m
m=1 kg
μ = 0.45
The maximum acceleration of upper block can be μ g.
a= μ g ( g = 10 m/s²)
The maximum acceleration of system will ω²X.
ω = natural frequency
X=maximum displacement
For top stop slipping
μ g =ω²X
We know for spring mass system natural frequency given as

By putting the values

ω = 4.47 rad/s
μ g =ω²X
By putting the values
0.45 x 10 = 4.47² X
X = 0.2 m
From energy conservation


150 x 0.2²=6.67 v²
v=0.94 m/s
This is the maximum speed of system.
P = m*v
7.5 = m*15
m = 7.5/15 = 0.5 kg