1000 g of feathers is the least dense
The answer is 19.9 grams cadmium.
Assuming there was no heat leaked from the system, the heat q lost by cadmium would be equal to the heat gained by the water:
heat lost by cadmium = heat gained by the water
-qcadmium = qwater
Since q is equal to mcΔT, we can now calculate for the mass m of the cadmium sample:
-qcadmium = qwater
-(mcadmium)(0.850J/g°C)(38.6°C-98.0°C)) = 150.0g(4.18J/g°C)(38.6°C-37.0°C)
mcadmium = 19.9 grams
Explanation:
The equation is given as;
N2O(g) ⇄ N2(g) + O(g)
k₁ = Forward reaction
k₋₁ = Reverse Reaction
Equilibrium concentration (K) = k₁ / k₋₁
![K = \frac{[N2O] }{[N2] [ O]}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BN2O%5D%20%7D%7B%5BN2%5D%20%5B%20O%5D%7D)
Formula for density is mass / volume.
100 ml is volume. 76.5g of cooking oil is
the mass.
Therefore
76.5/100 = .765g/ml
The solution is buffered with a weak acid and it's conjugate base. Since NaOH is a base, you can use a weak acid as it's buffer.