We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:
Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.
(1/2)*m*v²=m*g*h, masses cancel out and we get:
(1/2)*v²=g*h, and we multiply by 2 both sides of the equation
v²=2*g*h, and we take the square root to get v:
v=√(2*g*h)
v=99.04 m/s
So the package is moving with the speed of v= 99.04 m/s when it hits the ground.
Answer:
<em>Well, I think the best answer will be is </em><em>1.59 g/mL Good Luck!</em>
The North Magnetic Pole is the point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downwards (in other words, if a magnetic compass needle is allowed to rotate about a horizontal axis, it will point straight down). There is only one location where this occurs, near (but distinct from) the Geographic North Pole and the Geomagnetic North Pole.
Hydrogen gas is harmless to your feet so since you don’t need protection against it that seems the best answer.
Answer:
75.645 J
Explanation:
The kinetic energy is related to the mass and velocity by the formula ...
KE = 1/2mv²
For the given mass of 0.045 kg, and velocity of 41 m/s, the kinetic energy is ...
KE = 1/2(0.045 kg)(41 m/s)² = 75.645 J
__
The unit of energy, joule, is a derived unit equal to 1 kg·m²/s².