Molarity can be defined as the number of moles of solute in 1 L of solution.
M = n/V
Where M is the molarity of the solution (M or mol/L), n is the moles of the solute (mol) and V is the volume of the solution (L).
Here, solute is KF.
n = <span>0.250 mol
</span>V = 0.500 L
M = ?
By applying the formula,
M = 0.250 mol / 0.500 L
M = 0.500 mol/L
Hence, the molarity of KF solution is 0.500 mol/L.
Explanation:
It will have to change its form in order for the cell to focus on developing and retaining a viable, in order to be large and narrow as in the situation of the nerve cells or to build a more 'contoured' surface, that is, to establish microvillus.
With all of the information given (pressure, volume, temperature, and the molar mass), we need a formula that relates this all together. The formula we need is the ideal gas law, PV=nRT. Since the pressure is defined in millimeters of mercury, we need the R value that correlates with this, which is 62.4; on top of this, we need the temperature in Kelvin - simply add 273.15 to convert from Celsius. With all of this information, simply plug-and-chug:
PV=nRT
(800)(3.7) = n(62.4)(37 + 273.15)
n = 0.1529 moles
Finally, the problem is asking the amount of air in grams. We have moles, so all we need to do is multiply that value by the molar mass.
0.1529 moles x 29 grams per mole =
4.435 grams of air
The balloon has 4.435 grams of air inside it.
Hope this helps!
Answer:

Explanation:
Hello,
In this case, since 454 g are equivalent to 1 pound and 1000 millilitres are equivalent to 1 liter, the required density is computed below by applying the corresponding conversion factor:

Regards.