To solve this problem it is necessary to apply the concepts related to gravity as an expression of a celestial body, as well as the use of concepts such as centripetal acceleration, angular velocity and period.
PART A) The expression to find the acceleration of the earth due to the gravity of another celestial body as the Moon is given by the equation

Where,
G = Gravitational Universal Constant
d = Distance
M = Mass
Radius earth center of mass
PART B) Using the same expression previously defined we can find the acceleration of the moon on the earth like this,



PART C) Centripetal acceleration can be found throughout the period and angular velocity, that is

At the same time we have that centripetal acceleration is given as

Replacing



Answer:
840 cm
Explanation:
Note: A hydraulic press operate based on pascal's principle.
From pascal's principle
W₁/d₁ = W₂/d₂...................... Equation 1
Where W₁ and W₂ are the first and second weight, and d₁ and d₂ are the first and second diameter of the piston.
make d₁ the subject of the equation
d₁ = W₁×d₂/W₂................ Equation 2
Given: W₁ = 2100 kg, W₂ = 25 kg, d₂ = 10 cm = 0.1 m.
Substitute these values into equation 2
d₁ = 2100(0.1)/25
d₁ = 8.4 m
d₁ = 840 cm
Answer:
3.0 x 10¹ Nm
Explanation:
Torque = F x r
Where F is force applied and r is perpendicular distance from pivot point . r
is also called lever arm
Here F = 15 N and r = 2.0 m
Torque
= 15 N X 2.0 m
= 3.0 10¹ Nm.
Answer:
342 m/s
Explanation:
The velocity of sound in air is approximated as:
v ≈ 331.4 + 0.6 T
where v is the velocity in m/s and T is the temperature in Celsius.
At T = 18:
v ≈ 331.4 + 0.6 (18)
v ≈ 342.2
The velocity is approximately 342 m/s.
Answer:
-5.8868501529 m/s² or -5.8868501529g
0.118909090909 s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Dividing by g

The acceleration is -5.8868501529 m/s² or -5.8868501529g

The time taken is 0.118909090909 s