Answer:
Here's what I get
Explanation:
1. Nickel sulfate
base + acid ⟶ salt + water
NiSO₄ is a salt of the base Ni(OH)₂ and the acid sulfuric acid.
Hydroxides of transition metals are insoluble; most sulfates are soluble.
![\underbrace{\hbox{Ni(OH)$_{2}$(s)}}_{\hbox{base}} + \underbrace{\hbox{H$_{2}$SO$_{4}$(aq)}}_{\hbox{acid}} \longrightarrow \, \underbrace{\hbox{NiSO$_{4}$(aq)}}_{\hbox{salt}} + \underbrace{\hbox{2H$_{2}$O(l)}}_{\hbox{water}}](https://tex.z-dn.net/?f=%5Cunderbrace%7B%5Chbox%7BNi%28OH%29%24_%7B2%7D%24%28s%29%7D%7D_%7B%5Chbox%7Bbase%7D%7D%20%2B%20%5Cunderbrace%7B%5Chbox%7BH%24_%7B2%7D%24SO%24_%7B4%7D%24%28aq%29%7D%7D_%7B%5Chbox%7Bacid%7D%7D%20%5Clongrightarrow%20%5C%2C%20%5Cunderbrace%7B%5Chbox%7BNiSO%24_%7B4%7D%24%28aq%29%7D%7D_%7B%5Chbox%7Bsalt%7D%7D%20%2B%20%5Cunderbrace%7B%5Chbox%7B2H%24_%7B2%7D%24O%28l%29%7D%7D_%7B%5Chbox%7Bwater%7D%7D)
2. Carbonate + acid
Most carbonates are insoluble.
They react with acids to form carbonic acid (H₂CO₃), which decomposes into water and carbon dioxide.
![\rm NiCO_{3}(s) + H_{2}SO_{4}(aq) \longrightarrow \, NiSO_{4}(aq) + H_{2}O(l) + CO_{2}(g)](https://tex.z-dn.net/?f=%5Crm%20NiCO_%7B3%7D%28s%29%20%2B%20H_%7B2%7DSO_%7B4%7D%28aq%29%20%5Clongrightarrow%20%5C%2C%20NiSO_%7B4%7D%28aq%29%20%2B%20H_%7B2%7DO%28l%29%20%2B%20CO_%7B2%7D%28g%29)
Answer:
Acceleration:
Speed/Time
Change in speed or velocity over a specific amount of time
Speed:
Distance/Time
Change in distance over a specific amount of time
Velocity:
Distance/Time
Speed in a given direction
<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
![\pi=iMRT](https://tex.z-dn.net/?f=%5Cpi%3DiMRT)
Or,
![\pi=i\times \frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}\times RT](https://tex.z-dn.net/?f=%5Cpi%3Di%5Ctimes%20%5Cfrac%7B%5Ctext%7BMass%20of%20solute%7D%5Ctimes%201000%7D%7B%5Ctext%7BMolar%20mass%20of%20solute%7D%5Ctimes%20%5Ctext%7BVolume%20of%20solution%20%28in%20mL%29%7D%7D%5Ctimes%20RT)
where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = ![62.364\text{ L.mmHg }mol^{-1}K^{-1}](https://tex.z-dn.net/?f=62.364%5Ctext%7B%20L.mmHg%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D)
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:
![15.5mmHg=1\times \frac{0.033\times 1000}{\text{Molar mass of insulin}\times 6.5}\times 62.364\text{ L.mmHg }mol^{-1}K^{-1}\times 298K\\\\\text{molar mass of insulin}=\frac{1\times 0.033\times 1000\times 62.364\times 298}{15.5\times 6.5}=6087.2g/mol](https://tex.z-dn.net/?f=15.5mmHg%3D1%5Ctimes%20%5Cfrac%7B0.033%5Ctimes%201000%7D%7B%5Ctext%7BMolar%20mass%20of%20insulin%7D%5Ctimes%206.5%7D%5Ctimes%2062.364%5Ctext%7B%20L.mmHg%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D%5Ctimes%20298K%5C%5C%5C%5C%5Ctext%7Bmolar%20mass%20of%20insulin%7D%3D%5Cfrac%7B1%5Ctimes%200.033%5Ctimes%201000%5Ctimes%2062.364%5Ctimes%20298%7D%7B15.5%5Ctimes%206.5%7D%3D6087.2g%2Fmol)
Hence, the molar mass of the insulin is 6087.2 g/mol
Here are the possible answers for the following questions above:
1. H-CC-H (name) - C<span>. ethyne
</span>2. cyclic compound with both saturated and unsaturated characteristics - G<span>. benzene
</span>3. CnH2n - E<span>. general formula for alkenes
</span>4. reaction typical of unsaturated hydrocarbons - A<span>. addition
</span>5. CnH2n-2 - F<span>. general formula for alkynes
</span>6. series name of hydrocarbons with triple bond - D<span>. alkyne
</span>7. CnH2n+2 - B<span>. general formula of alkanes</span>