Answer:
The correct answer is 8.79 × 10⁻² M.
Explanation:
Based on the given information, the mass of NaI given is 4.11 grams. The molecular mass of NaI is 149.89 gram per mole. The moles of NaI can be determined by using the formula,
No. of moles of NaI = Weight of NaI/ Molecular mass
= 4.11 / 149.89
= 0.027420
The vol. of the solution given is 312 ml or 0.312 L
The molarity can be determined by using the formula,
Molarity = No. of moles/ Volume of the solution in L
= 0.027420/0.312
= 0.0879 M or 8.79 × 10⁻² M
Answer:
Heat flows from the block at high temperature to the one with lower temperature
Explanation:
The direction of heat flow is from a body at higher temperature to one with a lower temperature.
- Temperature gradient determines the way and manner in which heat is dissipated.
- As a system tend to increase entropy, it ensures that heat moves from hotter body to a colder body.
- Heat movement here is by conduction as the body touches.
- When both bodies reaches the same temperature, thermal equilibrium is established.
Answer:
The internal energy is the total amount of kinetic energy and potential energy of all the particles in the system. ... When the substance melts or boils, energy is put in to breaking the bonds that are holding particles together, which increases the potential energy.
Explanation:
Answer:
its very simple ans we have 2 just multiply256
The carbon atom(s) of pyruvate is(are) first converted to carbon dioxide by pyruvate dehydrogenase complex is the second number of carbon of pyruvate goes to oxidation and convert it to CO2 in Krebs cycle.
<h3>what is Krebs cycle ?</h3>
Krebs cycle is also known as citric acid cycle it is the conversion of sugar to the direct energy in the form of ATP which further goes to mitochondria as it is the power house of the human cell.
Pyruvate molecule release second number carbon from the chain and undergoes oxidation to form the CO2.
Therefore, second number carbon atom will converts to carbon dioxide.
Learn more about Krebs cycle , here:
brainly.com/question/14241294
#SPJ4