1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goshia [24]
3 years ago
7

How can a parked car move?

Physics
1 answer:
MariettaO [177]3 years ago
6 0
Add force to unbalance the forces

You might be interested in
C. If you knew the pressure, volume, and temperature of the air in the
densk [106]

Answer:

Explanation:

First, let's review the ideal gas law, PV = nRT. In this equation, 'P' is the pressure in atmospheres, 'V' is the volume in liters, 'n' is the number of particles in moles, 'T' is the temperature in Kelvin and 'R' is the ideal gas constant (0.0821 liter atmospheres per moles Kelvin).

5 0
3 years ago
If wave A has twice the amplitude and three times the frequency as wave B, then the energy carried by wave A must be ____ times
soldier1979 [14.2K]

Answer:

4 times

Explanation:

As we know that the energy of a wave is directly proportional to the square of the amplitude of the wave,

Here, the amplitude of the wave A is twice as compared to B.

So, the energy of wave A is 4 times the energy of wave B.

4 0
3 years ago
The vector position of an object is given by r what is the torque acting on the object about the origin when a force f = (−12.5i
attashe74 [19]
Let the vector position of the object in the (x-y) plane be 
\vec{r} = x \hat{i} + y \hat{j}

The applied force is
\vec{f} = -12.5 \hat{i}


By definition, the applied torque is
\vec{T} = \vec{r} \times \vec{f} = (x\hat{i} + y\hat{j}) \times (-12.5y \hat{i}) = 12.5\hat{k}

Answer: 12.5y \, \hat{k}

7 0
3 years ago
Electrical systems are governed by Ohm’s law, which states that V = IR, where V is the voltage, I is the current, and R is the r
ella [17]

Answer:

\frac{dR(t)}{dt}=0.06\Omega

Explanation:

Since R(t)=\frac{V}{I(t)}, we calculate the resistance rate by deriving this formula with respect to time:

\frac{dR(t)}{dt}=\frac{d}{dt}(\frac{V}{I(t)})=V\frac{d}{dt}(\frac{1}{I(t)})

Deriving what is left (remember that (\frac{1}{f(x)})'=-\frac{1}{f(x)^2}f'(x)):

\frac{d}{dt}(\frac{1}{I(t)})=-\frac{1}{I(t)^2}\frac{dI(t)}{dt}

So we have:

\frac{dR(t)}{dt}=-\frac{V}{I(t)^2}\frac{dI(t)}{dt}

Which for our values is (the rate of <em>I(t)</em> is decreasing so we put a negative sign):

\frac{dR(t)}{dt}=-\frac{24V}{(56A)^2}(-8A/s)=0.06\Omega

8 0
3 years ago
A uniform disk has a moment of inertia that is (1/2)MR2. A uniform disk of mass 13 kg, thickness 0.3 m, and radius 0.2 m is loca
kicyunya [14]
The angular momentum of an object is equal to the product of its moment of inertia and angular velocity.
L = Iω
I = 1/2 MR²
I = 1/2 x 13 x (0.2)
I = 1.3

ω = 2π/t
ω = 2π/0.3
ω = 20.9

L = 1.3 x 20.9
= 27.2 kgm²/s
6 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE ANSWER QUICK!!! 2. Every magnet has _ unlike poles.
    7·1 answer
  • You walk into the kitchen and see a broken egg on the floor. Which of the following is an inference you can make based on this o
    15·2 answers
  • anice is watching her granddaughter drive a Barbie Jeep with a 6 V battery and an electric motor with 5 ohm of resistance. How m
    13·2 answers
  • A man pushes a heavy cart with a force exerted of 250 Newtons to keep it moving at a constant velocity. What is the kinetic fric
    14·1 answer
  • Sam is pulling a box up to the second story of his apartment via a string. The box weighs 16.5 kg and starts from rest on the gr
    9·1 answer
  • Can a small force exert a greater torque than a larger<br> force.Explain.
    14·1 answer
  • Two in-phase loudspeakers are 3.0 m apart. they emit sound with a frequency of 490 hz. a microphone is placed half-way between t
    12·1 answer
  • A 845kg dragster (very fast car) accelerates from 2m/s to 30m/s in 0.9s. Determine the average force exerted on the dragster.
    9·1 answer
  • When the mass of an object increases, the forcé of gravity<br>​
    9·2 answers
  • How can we make a non-luminous object luminous?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!